PassbyGrocer commited on
Commit
50af4fd
1 Parent(s): bf01d4e

End of training

Browse files
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: google-bert/bert-base-chinese
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: bert_bilstm_crf-ner-weibo
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # bert_bilstm_crf-ner-weibo
20
+
21
+ This model is a fine-tuned version of [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1945
24
+ - Precision: 0.6524
25
+ - Recall: 0.7429
26
+ - F1: 0.6947
27
+ - Accuracy: 0.9703
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 100
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.4272 | 1.0 | 22 | 0.3531 | 0.0 | 0.0 | 0.0 | 0.9330 |
60
+ | 0.2529 | 2.0 | 44 | 0.1587 | 0.4922 | 0.4884 | 0.4903 | 0.9613 |
61
+ | 0.1472 | 3.0 | 66 | 0.1171 | 0.5524 | 0.6915 | 0.6142 | 0.9681 |
62
+ | 0.0977 | 4.0 | 88 | 0.1057 | 0.5866 | 0.6967 | 0.6369 | 0.9714 |
63
+ | 0.065 | 5.0 | 110 | 0.1035 | 0.6336 | 0.7069 | 0.6683 | 0.9715 |
64
+ | 0.0538 | 6.0 | 132 | 0.1149 | 0.6307 | 0.7069 | 0.6667 | 0.9699 |
65
+ | 0.0413 | 7.0 | 154 | 0.1057 | 0.6315 | 0.7224 | 0.6739 | 0.9724 |
66
+ | 0.0344 | 8.0 | 176 | 0.1236 | 0.5979 | 0.7455 | 0.6636 | 0.9693 |
67
+ | 0.0296 | 9.0 | 198 | 0.1271 | 0.5958 | 0.7352 | 0.6582 | 0.9680 |
68
+ | 0.0297 | 10.0 | 220 | 0.1257 | 0.6442 | 0.6889 | 0.6658 | 0.9702 |
69
+ | 0.0212 | 11.0 | 242 | 0.1440 | 0.6037 | 0.7481 | 0.6682 | 0.9664 |
70
+ | 0.0208 | 12.0 | 264 | 0.1368 | 0.6284 | 0.7044 | 0.6642 | 0.9683 |
71
+ | 0.0165 | 13.0 | 286 | 0.1337 | 0.6545 | 0.7404 | 0.6948 | 0.9698 |
72
+ | 0.0164 | 14.0 | 308 | 0.1388 | 0.6514 | 0.7301 | 0.6885 | 0.9700 |
73
+ | 0.014 | 15.0 | 330 | 0.1403 | 0.6690 | 0.7275 | 0.6970 | 0.9701 |
74
+ | 0.0109 | 16.0 | 352 | 0.1467 | 0.6448 | 0.7326 | 0.6859 | 0.9694 |
75
+ | 0.0108 | 17.0 | 374 | 0.1488 | 0.6081 | 0.7301 | 0.6636 | 0.9670 |
76
+ | 0.0106 | 18.0 | 396 | 0.1564 | 0.6572 | 0.7147 | 0.6847 | 0.9687 |
77
+ | 0.0105 | 19.0 | 418 | 0.1620 | 0.6667 | 0.7147 | 0.6898 | 0.9691 |
78
+ | 0.01 | 20.0 | 440 | 0.1638 | 0.7046 | 0.6684 | 0.6860 | 0.9705 |
79
+ | 0.0106 | 21.0 | 462 | 0.1542 | 0.6709 | 0.6761 | 0.6735 | 0.9692 |
80
+ | 0.0092 | 22.0 | 484 | 0.1487 | 0.6683 | 0.7198 | 0.6931 | 0.9694 |
81
+ | 0.011 | 23.0 | 506 | 0.1502 | 0.6396 | 0.7301 | 0.6819 | 0.9691 |
82
+ | 0.0068 | 24.0 | 528 | 0.1534 | 0.6801 | 0.7378 | 0.7078 | 0.9705 |
83
+ | 0.0077 | 25.0 | 550 | 0.1600 | 0.6793 | 0.7352 | 0.7062 | 0.9710 |
84
+ | 0.0071 | 26.0 | 572 | 0.1644 | 0.6386 | 0.7404 | 0.6857 | 0.9676 |
85
+ | 0.0062 | 27.0 | 594 | 0.1714 | 0.6430 | 0.7224 | 0.6804 | 0.9688 |
86
+ | 0.006 | 28.0 | 616 | 0.1649 | 0.6461 | 0.7275 | 0.6844 | 0.9694 |
87
+ | 0.0072 | 29.0 | 638 | 0.1631 | 0.6643 | 0.7326 | 0.6968 | 0.9695 |
88
+ | 0.0122 | 30.0 | 660 | 0.1802 | 0.6054 | 0.7455 | 0.6682 | 0.9676 |
89
+ | 0.0062 | 31.0 | 682 | 0.1829 | 0.6154 | 0.7404 | 0.6721 | 0.9676 |
90
+ | 0.0075 | 32.0 | 704 | 0.1674 | 0.6313 | 0.7352 | 0.6793 | 0.9691 |
91
+ | 0.0048 | 33.0 | 726 | 0.1664 | 0.6422 | 0.7429 | 0.6889 | 0.9692 |
92
+ | 0.0045 | 34.0 | 748 | 0.1724 | 0.6374 | 0.7455 | 0.6872 | 0.9697 |
93
+ | 0.0055 | 35.0 | 770 | 0.1714 | 0.6636 | 0.7301 | 0.6952 | 0.9700 |
94
+ | 0.0071 | 36.0 | 792 | 0.1673 | 0.6316 | 0.7404 | 0.6817 | 0.9692 |
95
+ | 0.0039 | 37.0 | 814 | 0.1635 | 0.6620 | 0.7352 | 0.6967 | 0.9709 |
96
+ | 0.0036 | 38.0 | 836 | 0.1727 | 0.6584 | 0.7532 | 0.7026 | 0.9710 |
97
+ | 0.0051 | 39.0 | 858 | 0.1735 | 0.6509 | 0.7429 | 0.6939 | 0.9708 |
98
+ | 0.0033 | 40.0 | 880 | 0.1758 | 0.6949 | 0.7378 | 0.7157 | 0.9718 |
99
+ | 0.0045 | 41.0 | 902 | 0.1812 | 0.6309 | 0.7558 | 0.6877 | 0.9698 |
100
+ | 0.0035 | 42.0 | 924 | 0.1791 | 0.6729 | 0.7404 | 0.7050 | 0.9709 |
101
+ | 0.0043 | 43.0 | 946 | 0.1923 | 0.6532 | 0.7455 | 0.6963 | 0.9697 |
102
+ | 0.0045 | 44.0 | 968 | 0.1815 | 0.6492 | 0.7326 | 0.6884 | 0.9696 |
103
+ | 0.0037 | 45.0 | 990 | 0.1830 | 0.6493 | 0.7378 | 0.6907 | 0.9700 |
104
+ | 0.0045 | 46.0 | 1012 | 0.1809 | 0.6493 | 0.7378 | 0.6907 | 0.9700 |
105
+ | 0.0039 | 47.0 | 1034 | 0.1811 | 0.6545 | 0.7404 | 0.6948 | 0.9701 |
106
+ | 0.0046 | 48.0 | 1056 | 0.1740 | 0.6659 | 0.7172 | 0.6906 | 0.9708 |
107
+ | 0.0039 | 49.0 | 1078 | 0.1827 | 0.6318 | 0.7455 | 0.6840 | 0.9694 |
108
+ | 0.0036 | 50.0 | 1100 | 0.1762 | 0.6443 | 0.7404 | 0.6890 | 0.9698 |
109
+ | 0.0046 | 51.0 | 1122 | 0.1752 | 0.6538 | 0.7378 | 0.6932 | 0.9702 |
110
+ | 0.0036 | 52.0 | 1144 | 0.1856 | 0.6344 | 0.7404 | 0.6833 | 0.9692 |
111
+ | 0.0036 | 53.0 | 1166 | 0.1870 | 0.6350 | 0.7378 | 0.6825 | 0.9693 |
112
+ | 0.0049 | 54.0 | 1188 | 0.1840 | 0.6723 | 0.7121 | 0.6916 | 0.9699 |
113
+ | 0.0042 | 55.0 | 1210 | 0.1927 | 0.6220 | 0.7404 | 0.6761 | 0.9687 |
114
+ | 0.0039 | 56.0 | 1232 | 0.1854 | 0.6545 | 0.7352 | 0.6925 | 0.9704 |
115
+ | 0.0042 | 57.0 | 1254 | 0.1900 | 0.6523 | 0.7378 | 0.6924 | 0.9700 |
116
+ | 0.0028 | 58.0 | 1276 | 0.1894 | 0.6486 | 0.7404 | 0.6915 | 0.9697 |
117
+ | 0.0049 | 59.0 | 1298 | 0.1904 | 0.6366 | 0.7429 | 0.6856 | 0.9695 |
118
+ | 0.0031 | 60.0 | 1320 | 0.1844 | 0.6492 | 0.7326 | 0.6884 | 0.9698 |
119
+ | 0.0045 | 61.0 | 1342 | 0.1866 | 0.6429 | 0.7404 | 0.6882 | 0.9696 |
120
+ | 0.004 | 62.0 | 1364 | 0.1888 | 0.625 | 0.7326 | 0.6746 | 0.9686 |
121
+ | 0.0031 | 63.0 | 1386 | 0.1922 | 0.6875 | 0.7352 | 0.7106 | 0.9710 |
122
+ | 0.0044 | 64.0 | 1408 | 0.1918 | 0.6722 | 0.7326 | 0.7011 | 0.9706 |
123
+ | 0.0046 | 65.0 | 1430 | 0.1987 | 0.6475 | 0.7506 | 0.6952 | 0.9685 |
124
+ | 0.0044 | 66.0 | 1452 | 0.1868 | 0.6388 | 0.7455 | 0.6880 | 0.9698 |
125
+ | 0.0042 | 67.0 | 1474 | 0.1920 | 0.6356 | 0.7532 | 0.6894 | 0.9695 |
126
+ | 0.0038 | 68.0 | 1496 | 0.1852 | 0.6606 | 0.7506 | 0.7028 | 0.9705 |
127
+ | 0.0033 | 69.0 | 1518 | 0.1843 | 0.6476 | 0.7558 | 0.6975 | 0.9700 |
128
+ | 0.0034 | 70.0 | 1540 | 0.1797 | 0.6532 | 0.7506 | 0.6986 | 0.9707 |
129
+ | 0.0042 | 71.0 | 1562 | 0.1820 | 0.6332 | 0.7455 | 0.6848 | 0.9699 |
130
+ | 0.0033 | 72.0 | 1584 | 0.1874 | 0.6482 | 0.7532 | 0.6968 | 0.9704 |
131
+ | 0.0039 | 73.0 | 1606 | 0.1878 | 0.6636 | 0.7506 | 0.7045 | 0.9708 |
132
+ | 0.003 | 74.0 | 1628 | 0.1857 | 0.6553 | 0.7429 | 0.6964 | 0.9712 |
133
+ | 0.0038 | 75.0 | 1650 | 0.1889 | 0.6606 | 0.7404 | 0.6982 | 0.9709 |
134
+ | 0.004 | 76.0 | 1672 | 0.1880 | 0.6539 | 0.7481 | 0.6978 | 0.9709 |
135
+ | 0.0032 | 77.0 | 1694 | 0.1875 | 0.6590 | 0.7404 | 0.6973 | 0.9706 |
136
+ | 0.0034 | 78.0 | 1716 | 0.1868 | 0.6532 | 0.7455 | 0.6963 | 0.9710 |
137
+ | 0.0029 | 79.0 | 1738 | 0.1899 | 0.6545 | 0.7404 | 0.6948 | 0.9705 |
138
+ | 0.0032 | 80.0 | 1760 | 0.1899 | 0.6628 | 0.7429 | 0.7006 | 0.9709 |
139
+ | 0.0037 | 81.0 | 1782 | 0.1928 | 0.6545 | 0.7404 | 0.6948 | 0.9705 |
140
+ | 0.0039 | 82.0 | 1804 | 0.1916 | 0.6560 | 0.7404 | 0.6957 | 0.9705 |
141
+ | 0.0034 | 83.0 | 1826 | 0.1926 | 0.6560 | 0.7352 | 0.6933 | 0.9705 |
142
+ | 0.0032 | 84.0 | 1848 | 0.1931 | 0.6621 | 0.7455 | 0.7013 | 0.9709 |
143
+ | 0.0048 | 85.0 | 1870 | 0.1925 | 0.6659 | 0.7481 | 0.7046 | 0.9712 |
144
+ | 0.0039 | 86.0 | 1892 | 0.1903 | 0.6690 | 0.7326 | 0.6994 | 0.9709 |
145
+ | 0.0039 | 87.0 | 1914 | 0.1948 | 0.6538 | 0.7429 | 0.6955 | 0.9709 |
146
+ | 0.0032 | 88.0 | 1936 | 0.1949 | 0.6682 | 0.7558 | 0.7093 | 0.9710 |
147
+ | 0.003 | 89.0 | 1958 | 0.1948 | 0.6697 | 0.7609 | 0.7124 | 0.9710 |
148
+ | 0.0027 | 90.0 | 1980 | 0.1927 | 0.6489 | 0.7506 | 0.6961 | 0.9705 |
149
+ | 0.0029 | 91.0 | 2002 | 0.1931 | 0.6496 | 0.7481 | 0.6953 | 0.9706 |
150
+ | 0.003 | 92.0 | 2024 | 0.1932 | 0.6532 | 0.7455 | 0.6963 | 0.9712 |
151
+ | 0.0029 | 93.0 | 2046 | 0.1928 | 0.6539 | 0.7481 | 0.6978 | 0.9712 |
152
+ | 0.0036 | 94.0 | 2068 | 0.1935 | 0.6503 | 0.7506 | 0.6969 | 0.9710 |
153
+ | 0.0034 | 95.0 | 2090 | 0.1941 | 0.6607 | 0.7558 | 0.7050 | 0.9714 |
154
+ | 0.0035 | 96.0 | 2112 | 0.1940 | 0.6621 | 0.7455 | 0.7013 | 0.9711 |
155
+ | 0.0028 | 97.0 | 2134 | 0.1940 | 0.6553 | 0.7429 | 0.6964 | 0.9707 |
156
+ | 0.0032 | 98.0 | 2156 | 0.1944 | 0.6509 | 0.7429 | 0.6939 | 0.9704 |
157
+ | 0.0028 | 99.0 | 2178 | 0.1943 | 0.6509 | 0.7429 | 0.6939 | 0.9705 |
158
+ | 0.0021 | 100.0 | 2200 | 0.1945 | 0.6524 | 0.7429 | 0.6947 | 0.9703 |
159
+
160
+
161
+ ### Framework versions
162
+
163
+ - Transformers 4.46.1
164
+ - Pytorch 1.13.1+cu117
165
+ - Datasets 3.1.0
166
+ - Tokenizers 0.20.2
config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google-bert/bert-base-chinese",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-GPE.NAM",
15
+ "2": "I-GPE.NAM",
16
+ "3": "B-GPE.NOM",
17
+ "4": "I-GPE.NOM",
18
+ "5": "B-LOC.NAM",
19
+ "6": "I-LOC.NAM",
20
+ "7": "B-LOC.NOM",
21
+ "8": "I-LOC.NOM",
22
+ "9": "B-ORG.NAM",
23
+ "10": "I-ORG.NAM",
24
+ "11": "B-ORG.NOM",
25
+ "12": "I-ORG.NOM",
26
+ "13": "B-PER.NAM",
27
+ "14": "I-PER.NAM",
28
+ "15": "B-PER.NOM",
29
+ "16": "I-PER.NOM"
30
+ },
31
+ "initializer_range": 0.02,
32
+ "intermediate_size": 3072,
33
+ "label2id": {
34
+ "B-GPE.NAM": 1,
35
+ "B-GPE.NOM": 3,
36
+ "B-LOC.NAM": 5,
37
+ "B-LOC.NOM": 7,
38
+ "B-ORG.NAM": 9,
39
+ "B-ORG.NOM": 11,
40
+ "B-PER.NAM": 13,
41
+ "B-PER.NOM": 15,
42
+ "I-GPE.NAM": 2,
43
+ "I-GPE.NOM": 4,
44
+ "I-LOC.NAM": 6,
45
+ "I-LOC.NOM": 8,
46
+ "I-ORG.NAM": 10,
47
+ "I-ORG.NOM": 12,
48
+ "I-PER.NAM": 14,
49
+ "I-PER.NOM": 16,
50
+ "O": 0
51
+ },
52
+ "layer_norm_eps": 1e-12,
53
+ "max_position_embeddings": 512,
54
+ "model_type": "bert",
55
+ "num_attention_heads": 12,
56
+ "num_hidden_layers": 12,
57
+ "pad_token_id": 0,
58
+ "pooler_fc_size": 768,
59
+ "pooler_num_attention_heads": 12,
60
+ "pooler_num_fc_layers": 3,
61
+ "pooler_size_per_head": 128,
62
+ "pooler_type": "first_token_transform",
63
+ "position_embedding_type": "absolute",
64
+ "torch_dtype": "float32",
65
+ "transformers_version": "4.46.1",
66
+ "type_vocab_size": 2,
67
+ "use_cache": true,
68
+ "vocab_size": 21128
69
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9446e4b1859fbaa30c643d251430cfadde6e21787bba27c679cff4cc9c920098
3
+ size 406783828
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:191d8d8551ac6bffde283665d521db5278234f594bc2ec3aba2a0f2882c3d336
3
+ size 4795
vocab.txt ADDED
The diff for this file is too large to render. See raw diff