# Model Card for BERT-Text2Date ## Model Overview **Model Name:** BERT-Text2Date **Model Type:** BERT (Encoder-only architecture) **Language:** Persian **Description:** This model is designed to process and generate Persian dates in both formal (YYYY-MM-DD) and informal formats. It utilizes a dataset that includes various representations of dates, allowing for effective training in understanding and predicting Persian date formats. ## Dataset **Dataset Description:** The dataset consists of two types of dates: formal and informal. It is generated using two main functions: - **`convert_year_to_persian(year)`**: Converts years to Persian format, currently supporting the year 1400. - **`generate_date_mappings_with_persian_year(start_year, end_year)`**: Generates dates for a specified range, considering the number of days in each month. **Data Formats:** - **Informal Dates:** Various formats like “روز X ماه سال” and “اول/دوم/… ماه سال”. - **Formal Dates:** Stored in YYYY-MM-DD format. **Example Dates:** - بیست و هشتم اسفند هزار و چهار صد و ده, 1410-12-28 - 1 فروردین 1400, 1400-01-01 **Data Split:** - **Training Set:** 80% (19272 samples) - **Validation Set:** 10% (2409 samples) - **Test Set:** 10% (2409 samples) ## Model Architecture **Architecture Details:** The model is built using an encoder-only architecture, consisting of: - **Layers:** 4 Encoder layers - **Parameters:** - `vocab_size`: 25003 - `context_length`: 32 - `emb_dim`: 256 - `n_heads`: 4 - `drop_rate`: 0.1 **Parameter Count:** 14,933,931 ``` Transformer( (embedding): Embedding(25003, 256) (positional_encoding): Embedding(32, 256) (en): TransformerEncoder( (layers): ModuleList( (0-3): 4 x TransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=False) ) (linear1): Linear(in_features=256, out_features=512, bias=False) (dropout): Dropout(p=0.1, inplace=False) (linear2): Linear(in_features=512, out_features=256, bias=False) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.1, inplace=False) (dropout2): Dropout(p=0.1, inplace=False) ) ) ) (fc_train): Linear(in_features=256, out_features=25003, bias=True) ) ``` **Tokenizer:** The model uses a Persian tokenizer named “بلبل زبان” available on Hugging Face, with a vocabulary size of 25,000 tokens. ## Training **Training Process:** - **Batch Size:** 2048 - **Epochs:** 60 - **Learning Rate:** 0.00005 - **Optimizer:** AdamW - **Weight Decay:** 0.2 - **Masking Technique:** The formal part of the date is masked to facilitate learning. **Performance Metrics:** - **Training Loss:** Reduced from 10.3 to 0.005 over 60 epochs. - **Validation Loss:** Reduced from 10.1 to 0.010. - **Test Accuracy:** 66% (exact match required). - **Perplexity:** 1.01 ## Inference **Inference Code:** The model can be loaded along with the tokenizer using the provided `Inference.ipynb` file. Three functions are implemented: 1. **Convert Token IDs to Text** ```python def text_to_token_ids(text, tokenizer): encoded = tokenizer.encode(text) encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension return encoded_tensor ``` 2. **Convert Text to Token IDs** ```python def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension return tokenizer.decode(flat.tolist()) ``` 3. **`predict_masked(input)`**: Takes an input to predict the masked date. ```python def predict_masked(model,tokenizer,input,deivce): model.eval() inputs_masked = input + " " + "[MASK][MASK][MASK][MASK]-[MASK][MASK]-[MASK][MASK]" input_ids = tokenizer.encode(inputs_masked) input_ids = torch.tensor(input_ids).to(deivce) with torch.no_grad(): logits = model(input_ids.unsqueeze(0)) logits = logits.flatten(0, 1) probs = torch.argmax(logits,dim=-1,keepdim=True) token_ids = probs.squeeze(1) answer_ids = token_ids[-11:-1] return token_ids_to_text(answer_ids,tokenizer) ``` And use: ```python predict_masked(model,tokenizer,"12 آبان 1402","cuda") ``` Output: ``` '1402-08-12' ``` ## Limitations - The model currently only supports Persian dates for the year 1400-1410, with potential for expansion. - Performance may vary with dates outside the training dataset. ## Intended Use This model is intended for applications requiring date recognition and generation in Persian, such as natural language processing tasks, chatbots, or educational tools. ## Acknowledgements - Special thanks to the developers of the “بلبل زبان” tokenizer and the contributors to the dataset.