--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.40298507462686567 - name: Recall type: recall value: 0.20018535681186284 - name: F1 type: f1 value: 0.2674922600619195 - name: Accuracy type: accuracy value: 0.9358727715788123 --- # distilbert-base This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Precision: 0.4030 - Recall: 0.2002 - F1: 0.2675 - Accuracy: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 107 | 0.3173 | 0.3081 | 0.1057 | 0.1573 | 0.9315 | | No log | 2.0 | 214 | 0.2994 | 0.4030 | 0.2002 | 0.2675 | 0.9359 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3