--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:502912 - loss:MarginMSELoss - mteb model-index: - name: XLM-RoBERTa-base-MSMARCO results: - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (ar) config: ar split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 17.861 - type: map_at_10 value: 28.733999999999998 - type: map_at_100 value: 30.482 - type: map_at_1000 value: 30.616 - type: map_at_20 value: 29.717 - type: map_at_3 value: 24.617 - type: map_at_5 value: 26.654 - type: mrr_at_1 value: 26.900000000000002 - type: mrr_at_10 value: 37.138 - type: mrr_at_100 value: 38.157999999999994 - type: mrr_at_1000 value: 38.204 - type: mrr_at_20 value: 37.808 - type: mrr_at_3 value: 33.717000000000006 - type: mrr_at_5 value: 35.632000000000005 - type: ndcg_at_1 value: 26.900000000000002 - type: ndcg_at_10 value: 36.125 - type: ndcg_at_100 value: 43.043 - type: ndcg_at_1000 value: 45.611000000000004 - type: ndcg_at_20 value: 39.055 - type: ndcg_at_3 value: 29.372 - type: ndcg_at_5 value: 32.015 - type: precision_at_1 value: 26.900000000000002 - type: precision_at_10 value: 8.59 - type: precision_at_100 value: 1.444 - type: precision_at_1000 value: 0.181 - type: precision_at_20 value: 5.295 - type: precision_at_3 value: 16.933 - type: precision_at_5 value: 12.839999999999998 - type: recall_at_1 value: 17.861 - type: recall_at_10 value: 49.175999999999995 - type: recall_at_100 value: 76.28399999999999 - type: recall_at_1000 value: 92.905 - type: recall_at_20 value: 58.755 - type: recall_at_3 value: 31.334 - type: recall_at_5 value: 38.217 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (arabic) config: arabic split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 16.744 - type: map_at_10 value: 25.447999999999997 - type: map_at_100 value: 26.296999999999997 - type: map_at_1000 value: 26.369 - type: map_at_20 value: 25.951 - type: map_at_3 value: 22.826 - type: map_at_5 value: 24.309 - type: mrr_at_1 value: 17.669 - type: mrr_at_10 value: 26.711000000000002 - type: mrr_at_100 value: 27.534 - type: mrr_at_1000 value: 27.589000000000002 - type: mrr_at_20 value: 27.211999999999996 - type: mrr_at_3 value: 24.052 - type: mrr_at_5 value: 25.532 - type: ndcg_at_1 value: 17.669 - type: ndcg_at_10 value: 30.53 - type: ndcg_at_100 value: 34.823 - type: ndcg_at_1000 value: 36.624 - type: ndcg_at_20 value: 32.323 - type: ndcg_at_3 value: 25.119000000000003 - type: ndcg_at_5 value: 27.791 - type: precision_at_1 value: 17.669 - type: precision_at_10 value: 4.8660000000000005 - type: precision_at_100 value: 0.7230000000000001 - type: precision_at_1000 value: 0.09 - type: precision_at_20 value: 2.826 - type: precision_at_3 value: 10.823 - type: precision_at_5 value: 7.9 - type: recall_at_1 value: 16.744 - type: recall_at_10 value: 45.205 - type: recall_at_100 value: 65.094 - type: recall_at_1000 value: 78.739 - type: recall_at_20 value: 52.066 - type: recall_at_3 value: 30.574 - type: recall_at_5 value: 36.986999999999995 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (bn) config: bn split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 15.962000000000002 - type: map_at_10 value: 24.746000000000002 - type: map_at_100 value: 26.306 - type: map_at_1000 value: 26.451 - type: map_at_20 value: 25.507 - type: map_at_3 value: 20.810000000000002 - type: map_at_5 value: 23.095 - type: mrr_at_1 value: 26.521 - type: mrr_at_10 value: 36.268 - type: mrr_at_100 value: 36.986999999999995 - type: mrr_at_1000 value: 37.047000000000004 - type: mrr_at_20 value: 36.611 - type: mrr_at_3 value: 32.644 - type: mrr_at_5 value: 35.223 - type: ndcg_at_1 value: 26.521 - type: ndcg_at_10 value: 32.038 - type: ndcg_at_100 value: 38.577 - type: ndcg_at_1000 value: 41.449999999999996 - type: ndcg_at_20 value: 34.086 - type: ndcg_at_3 value: 25.515 - type: ndcg_at_5 value: 28.860999999999997 - type: precision_at_1 value: 26.521 - type: precision_at_10 value: 8.224 - type: precision_at_100 value: 1.426 - type: precision_at_1000 value: 0.183 - type: precision_at_20 value: 4.854 - type: precision_at_3 value: 15.328 - type: precision_at_5 value: 12.701 - type: recall_at_1 value: 15.962000000000002 - type: recall_at_10 value: 41.573 - type: recall_at_100 value: 67.963 - type: recall_at_1000 value: 87.077 - type: recall_at_20 value: 48.036 - type: recall_at_3 value: 25.457 - type: recall_at_5 value: 33.143 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (bengali) config: bengali split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 14.865 - type: map_at_10 value: 24.122 - type: map_at_100 value: 25.345000000000002 - type: map_at_1000 value: 25.413000000000004 - type: map_at_20 value: 24.887999999999998 - type: map_at_3 value: 19.97 - type: map_at_5 value: 22.898 - type: mrr_at_1 value: 17.116999999999997 - type: mrr_at_10 value: 26.115 - type: mrr_at_100 value: 27.194000000000003 - type: mrr_at_1000 value: 27.243000000000002 - type: mrr_at_20 value: 26.828999999999997 - type: mrr_at_3 value: 21.922 - type: mrr_at_5 value: 24.985 - type: ndcg_at_1 value: 17.116999999999997 - type: ndcg_at_10 value: 29.918 - type: ndcg_at_100 value: 35.658 - type: ndcg_at_1000 value: 37.349 - type: ndcg_at_20 value: 32.74 - type: ndcg_at_3 value: 21.807000000000002 - type: ndcg_at_5 value: 27.128999999999998 - type: precision_at_1 value: 17.116999999999997 - type: precision_at_10 value: 5.405 - type: precision_at_100 value: 0.8380000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 3.288 - type: precision_at_3 value: 9.91 - type: precision_at_5 value: 8.828999999999999 - type: recall_at_1 value: 14.865 - type: recall_at_10 value: 45.946 - type: recall_at_100 value: 72.072 - type: recall_at_1000 value: 85.135 - type: recall_at_20 value: 57.206999999999994 - type: recall_at_3 value: 25.224999999999998 - type: recall_at_5 value: 37.838 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (de) config: de split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 10.285 - type: map_at_10 value: 22.831000000000003 - type: map_at_100 value: 25.868000000000002 - type: map_at_1000 value: 26.029999999999998 - type: map_at_20 value: 24.3 - type: map_at_3 value: 16.539 - type: map_at_5 value: 19.593 - type: mrr_at_1 value: 23.607 - type: mrr_at_10 value: 36.899 - type: mrr_at_100 value: 37.958 - type: mrr_at_1000 value: 37.987 - type: mrr_at_20 value: 37.454 - type: mrr_at_3 value: 32.732 - type: mrr_at_5 value: 35.126000000000005 - type: ndcg_at_1 value: 23.607 - type: ndcg_at_10 value: 32.774 - type: ndcg_at_100 value: 43.553999999999995 - type: ndcg_at_1000 value: 45.604 - type: ndcg_at_20 value: 36.408 - type: ndcg_at_3 value: 23.846 - type: ndcg_at_5 value: 26.954 - type: precision_at_1 value: 23.607 - type: precision_at_10 value: 11.639 - type: precision_at_100 value: 2.2689999999999997 - type: precision_at_1000 value: 0.258 - type: precision_at_20 value: 7.327999999999999 - type: precision_at_3 value: 18.251 - type: precision_at_5 value: 15.344 - type: recall_at_1 value: 10.285 - type: recall_at_10 value: 46.227000000000004 - type: recall_at_100 value: 85.478 - type: recall_at_1000 value: 97.52 - type: recall_at_20 value: 56.738 - type: recall_at_3 value: 22.633 - type: recall_at_5 value: 31.898 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (en) config: en split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 11.625 - type: map_at_10 value: 22.033 - type: map_at_100 value: 25.343 - type: map_at_1000 value: 25.555 - type: map_at_20 value: 23.77 - type: map_at_3 value: 17.163 - type: map_at_5 value: 19.431 - type: mrr_at_1 value: 24.781 - type: mrr_at_10 value: 35.998000000000005 - type: mrr_at_100 value: 37.345 - type: mrr_at_1000 value: 37.376 - type: mrr_at_20 value: 36.912 - type: mrr_at_3 value: 32.144 - type: mrr_at_5 value: 34.184 - type: ndcg_at_1 value: 24.781 - type: ndcg_at_10 value: 30.608999999999998 - type: ndcg_at_100 value: 42.407000000000004 - type: ndcg_at_1000 value: 45.1 - type: ndcg_at_20 value: 35.188 - type: ndcg_at_3 value: 24.271 - type: ndcg_at_5 value: 26.090000000000003 - type: precision_at_1 value: 24.781 - type: precision_at_10 value: 10.388 - type: precision_at_100 value: 2.35 - type: precision_at_1000 value: 0.28400000000000003 - type: precision_at_20 value: 7.140000000000001 - type: precision_at_3 value: 17.438000000000002 - type: precision_at_5 value: 14.043 - type: recall_at_1 value: 11.625 - type: recall_at_10 value: 40.717 - type: recall_at_100 value: 82.492 - type: recall_at_1000 value: 97.495 - type: recall_at_20 value: 54.208 - type: recall_at_3 value: 21.747 - type: recall_at_5 value: 28.74 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (english) config: english split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 6.765000000000001 - type: map_at_10 value: 13.469999999999999 - type: map_at_100 value: 14.575 - type: map_at_1000 value: 14.668000000000001 - type: map_at_20 value: 14.055000000000001 - type: map_at_3 value: 10.853 - type: map_at_5 value: 12.251 - type: mrr_at_1 value: 8.602 - type: mrr_at_10 value: 15.595999999999998 - type: mrr_at_100 value: 16.624 - type: mrr_at_1000 value: 16.704 - type: mrr_at_20 value: 16.169 - type: mrr_at_3 value: 12.881 - type: mrr_at_5 value: 14.393 - type: ndcg_at_1 value: 8.602 - type: ndcg_at_10 value: 18.107 - type: ndcg_at_100 value: 23.851 - type: ndcg_at_1000 value: 26.379 - type: ndcg_at_20 value: 20.182 - type: ndcg_at_3 value: 12.681000000000001 - type: ndcg_at_5 value: 15.190000000000001 - type: precision_at_1 value: 8.602 - type: precision_at_10 value: 3.6830000000000003 - type: precision_at_100 value: 0.7040000000000001 - type: precision_at_1000 value: 0.095 - type: precision_at_20 value: 2.332 - type: precision_at_3 value: 6.407 - type: precision_at_5 value: 5.188000000000001 - type: recall_at_1 value: 6.765000000000001 - type: recall_at_10 value: 30.511 - type: recall_at_100 value: 57.303000000000004 - type: recall_at_1000 value: 76.568 - type: recall_at_20 value: 38.284 - type: recall_at_3 value: 16.084 - type: recall_at_5 value: 21.886 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (fa) config: fa split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 15.268 - type: map_at_10 value: 27.929 - type: map_at_100 value: 30.323 - type: map_at_1000 value: 30.433 - type: map_at_20 value: 29.247 - type: map_at_3 value: 22.684 - type: map_at_5 value: 25.453 - type: mrr_at_1 value: 24.684 - type: mrr_at_10 value: 36.925999999999995 - type: mrr_at_100 value: 38.031 - type: mrr_at_1000 value: 38.063 - type: mrr_at_20 value: 37.62 - type: mrr_at_3 value: 33.07 - type: mrr_at_5 value: 35.467 - type: ndcg_at_1 value: 24.684 - type: ndcg_at_10 value: 36.153999999999996 - type: ndcg_at_100 value: 44.828 - type: ndcg_at_1000 value: 46.482 - type: ndcg_at_20 value: 39.678999999999995 - type: ndcg_at_3 value: 28.223 - type: ndcg_at_5 value: 31.684 - type: precision_at_1 value: 24.684 - type: precision_at_10 value: 9.778 - type: precision_at_100 value: 1.7610000000000001 - type: precision_at_1000 value: 0.199 - type: precision_at_20 value: 6.178999999999999 - type: precision_at_3 value: 17.563000000000002 - type: precision_at_5 value: 14.272000000000002 - type: recall_at_1 value: 15.268 - type: recall_at_10 value: 50.39 - type: recall_at_100 value: 83.39800000000001 - type: recall_at_1000 value: 93.589 - type: recall_at_20 value: 61.543000000000006 - type: recall_at_3 value: 29.754 - type: recall_at_5 value: 38.504 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (fi) config: fi split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 20.075000000000003 - type: map_at_10 value: 33.783 - type: map_at_100 value: 35.548 - type: map_at_1000 value: 35.650999999999996 - type: map_at_20 value: 34.824 - type: map_at_3 value: 29.069 - type: map_at_5 value: 31.887999999999998 - type: mrr_at_1 value: 32.9 - type: mrr_at_10 value: 44.633 - type: mrr_at_100 value: 45.491 - type: mrr_at_1000 value: 45.518 - type: mrr_at_20 value: 45.184999999999995 - type: mrr_at_3 value: 41.533 - type: mrr_at_5 value: 43.338 - type: ndcg_at_1 value: 32.9 - type: ndcg_at_10 value: 42.068 - type: ndcg_at_100 value: 48.836 - type: ndcg_at_1000 value: 50.849999999999994 - type: ndcg_at_20 value: 45.013999999999996 - type: ndcg_at_3 value: 34.382000000000005 - type: ndcg_at_5 value: 38.169 - type: precision_at_1 value: 32.9 - type: precision_at_10 value: 10.02 - type: precision_at_100 value: 1.545 - type: precision_at_1000 value: 0.182 - type: precision_at_20 value: 5.955 - type: precision_at_3 value: 20.9 - type: precision_at_5 value: 15.98 - type: recall_at_1 value: 20.075000000000003 - type: recall_at_10 value: 55.042 - type: recall_at_100 value: 81.609 - type: recall_at_1000 value: 95.048 - type: recall_at_20 value: 64.791 - type: recall_at_3 value: 36.617 - type: recall_at_5 value: 44.905 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (finnish) config: finnish split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 13.489999999999998 - type: map_at_10 value: 20.253 - type: map_at_100 value: 21.201 - type: map_at_1000 value: 21.285999999999998 - type: map_at_20 value: 20.796 - type: map_at_3 value: 17.869 - type: map_at_5 value: 19.217000000000002 - type: mrr_at_1 value: 14.514 - type: mrr_at_10 value: 21.369 - type: mrr_at_100 value: 22.273 - type: mrr_at_1000 value: 22.346 - type: mrr_at_20 value: 21.892 - type: mrr_at_3 value: 18.913 - type: mrr_at_5 value: 20.336000000000002 - type: ndcg_at_1 value: 14.514 - type: ndcg_at_10 value: 24.426000000000002 - type: ndcg_at_100 value: 29.253 - type: ndcg_at_1000 value: 31.752000000000002 - type: ndcg_at_20 value: 26.36 - type: ndcg_at_3 value: 19.523 - type: ndcg_at_5 value: 21.986 - type: precision_at_1 value: 14.514 - type: precision_at_10 value: 4.011 - type: precision_at_100 value: 0.6629999999999999 - type: precision_at_1000 value: 0.09 - type: precision_at_20 value: 2.444 - type: precision_at_3 value: 8.373 - type: precision_at_5 value: 6.332 - type: recall_at_1 value: 13.489999999999998 - type: recall_at_10 value: 36.43 - type: recall_at_100 value: 59.024 - type: recall_at_1000 value: 78.668 - type: recall_at_20 value: 43.793 - type: recall_at_3 value: 23.339 - type: recall_at_5 value: 29.213 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (fr) config: fr split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 7.768 - type: map_at_10 value: 17.591 - type: map_at_100 value: 20.544999999999998 - type: map_at_1000 value: 20.673 - type: map_at_20 value: 19.131 - type: map_at_3 value: 12.567999999999998 - type: map_at_5 value: 14.846 - type: mrr_at_1 value: 13.994000000000002 - type: mrr_at_10 value: 25.740000000000002 - type: mrr_at_100 value: 27.156999999999996 - type: mrr_at_1000 value: 27.189999999999998 - type: mrr_at_20 value: 26.61 - type: mrr_at_3 value: 20.554 - type: mrr_at_5 value: 23.163 - type: ndcg_at_1 value: 13.994000000000002 - type: ndcg_at_10 value: 25.929000000000002 - type: ndcg_at_100 value: 37.244 - type: ndcg_at_1000 value: 39.211 - type: ndcg_at_20 value: 30.314000000000004 - type: ndcg_at_3 value: 16.329 - type: ndcg_at_5 value: 19.826 - type: precision_at_1 value: 13.994000000000002 - type: precision_at_10 value: 8.192 - type: precision_at_100 value: 1.799 - type: precision_at_1000 value: 0.207 - type: precision_at_20 value: 5.583 - type: precision_at_3 value: 11.079 - type: precision_at_5 value: 10.204 - type: recall_at_1 value: 7.768 - type: recall_at_10 value: 41.516999999999996 - type: recall_at_100 value: 85.148 - type: recall_at_1000 value: 97.342 - type: recall_at_20 value: 55.696 - type: recall_at_3 value: 17.559 - type: recall_at_5 value: 25.128 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (hi) config: hi split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 12.864 - type: map_at_10 value: 23.992 - type: map_at_100 value: 26.007 - type: map_at_1000 value: 26.157999999999998 - type: map_at_20 value: 25.130000000000003 - type: map_at_3 value: 19.867 - type: map_at_5 value: 21.657 - type: mrr_at_1 value: 25.714 - type: mrr_at_10 value: 36.374 - type: mrr_at_100 value: 37.399 - type: mrr_at_1000 value: 37.458000000000006 - type: mrr_at_20 value: 37.055 - type: mrr_at_3 value: 33.762 - type: mrr_at_5 value: 35.176 - type: ndcg_at_1 value: 25.714 - type: ndcg_at_10 value: 31.902 - type: ndcg_at_100 value: 39.534000000000006 - type: ndcg_at_1000 value: 42.424 - type: ndcg_at_20 value: 35.189 - type: ndcg_at_3 value: 26.52 - type: ndcg_at_5 value: 27.833999999999996 - type: precision_at_1 value: 25.714 - type: precision_at_10 value: 9.171 - type: precision_at_100 value: 1.569 - type: precision_at_1000 value: 0.197 - type: precision_at_20 value: 5.671 - type: precision_at_3 value: 18.095 - type: precision_at_5 value: 13.370999999999999 - type: recall_at_1 value: 12.864 - type: recall_at_10 value: 42.522999999999996 - type: recall_at_100 value: 72.653 - type: recall_at_1000 value: 91.49199999999999 - type: recall_at_20 value: 53.452999999999996 - type: recall_at_3 value: 26.007 - type: recall_at_5 value: 31.608999999999998 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (id) config: id split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 10.563 - type: map_at_10 value: 20.183 - type: map_at_100 value: 22.461000000000002 - type: map_at_1000 value: 22.719 - type: map_at_20 value: 21.342 - type: map_at_3 value: 16.25 - type: map_at_5 value: 18.415 - type: mrr_at_1 value: 23.541999999999998 - type: mrr_at_10 value: 35.272999999999996 - type: mrr_at_100 value: 36.291000000000004 - type: mrr_at_1000 value: 36.336 - type: mrr_at_20 value: 35.894999999999996 - type: mrr_at_3 value: 31.874999999999996 - type: mrr_at_5 value: 33.833 - type: ndcg_at_1 value: 23.541999999999998 - type: ndcg_at_10 value: 28.144000000000002 - type: ndcg_at_100 value: 36.806 - type: ndcg_at_1000 value: 40.888000000000005 - type: ndcg_at_20 value: 31.263 - type: ndcg_at_3 value: 23.796999999999997 - type: ndcg_at_5 value: 25.304 - type: precision_at_1 value: 23.541999999999998 - type: precision_at_10 value: 9.771 - type: precision_at_100 value: 1.994 - type: precision_at_1000 value: 0.281 - type: precision_at_20 value: 6.343999999999999 - type: precision_at_3 value: 17.639 - type: precision_at_5 value: 14.271 - type: recall_at_1 value: 10.563 - type: recall_at_10 value: 35.47 - type: recall_at_100 value: 65.713 - type: recall_at_1000 value: 88.68599999999999 - type: recall_at_20 value: 44.285999999999994 - type: recall_at_3 value: 21.366 - type: recall_at_5 value: 27.598 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (indonesian) config: indonesian split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 17.149 - type: map_at_10 value: 27.351 - type: map_at_100 value: 28.42 - type: map_at_1000 value: 28.491 - type: map_at_20 value: 28.026 - type: map_at_3 value: 23.918 - type: map_at_5 value: 26.125999999999998 - type: mrr_at_1 value: 18.938 - type: mrr_at_10 value: 28.853 - type: mrr_at_100 value: 29.805999999999997 - type: mrr_at_1000 value: 29.863 - type: mrr_at_20 value: 29.457 - type: mrr_at_3 value: 25.714 - type: mrr_at_5 value: 27.674 - type: ndcg_at_1 value: 18.938 - type: ndcg_at_10 value: 33.195 - type: ndcg_at_100 value: 38.17 - type: ndcg_at_1000 value: 40.109 - type: ndcg_at_20 value: 35.514 - type: ndcg_at_3 value: 26.509 - type: ndcg_at_5 value: 30.325000000000003 - type: precision_at_1 value: 18.938 - type: precision_at_10 value: 5.694 - type: precision_at_100 value: 0.8370000000000001 - type: precision_at_1000 value: 0.10200000000000001 - type: precision_at_20 value: 3.366 - type: precision_at_3 value: 12.142999999999999 - type: precision_at_5 value: 9.385 - type: recall_at_1 value: 17.149 - type: recall_at_10 value: 49.799 - type: recall_at_100 value: 72.256 - type: recall_at_1000 value: 87.354 - type: recall_at_20 value: 58.585 - type: recall_at_3 value: 32.268 - type: recall_at_5 value: 41.275 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (ja) config: ja split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 10.001999999999999 - type: map_at_10 value: 19.887 - type: map_at_100 value: 22.192 - type: map_at_1000 value: 22.364 - type: map_at_20 value: 21.127000000000002 - type: map_at_3 value: 16.297 - type: map_at_5 value: 18.046 - type: mrr_at_1 value: 17.442 - type: mrr_at_10 value: 29.804000000000002 - type: mrr_at_100 value: 31.025999999999996 - type: mrr_at_1000 value: 31.075999999999997 - type: mrr_at_20 value: 30.570000000000004 - type: mrr_at_3 value: 26.491999999999997 - type: mrr_at_5 value: 28.341 - type: ndcg_at_1 value: 17.442 - type: ndcg_at_10 value: 27.561999999999998 - type: ndcg_at_100 value: 36.714999999999996 - type: ndcg_at_1000 value: 39.564 - type: ndcg_at_20 value: 31.133 - type: ndcg_at_3 value: 21.464 - type: ndcg_at_5 value: 23.775 - type: precision_at_1 value: 17.442 - type: precision_at_10 value: 7.663 - type: precision_at_100 value: 1.566 - type: precision_at_1000 value: 0.197 - type: precision_at_20 value: 5.07 - type: precision_at_3 value: 14.302000000000001 - type: precision_at_5 value: 11.07 - type: recall_at_1 value: 10.001999999999999 - type: recall_at_10 value: 39.982 - type: recall_at_100 value: 76.165 - type: recall_at_1000 value: 94.487 - type: recall_at_20 value: 51.559999999999995 - type: recall_at_3 value: 23.274 - type: recall_at_5 value: 29.842000000000002 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (japanese) config: japanese split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 6.412 - type: map_at_10 value: 12.008000000000001 - type: map_at_100 value: 13.138 - type: map_at_1000 value: 13.227 - type: map_at_20 value: 12.669 - type: map_at_3 value: 9.738 - type: map_at_5 value: 10.852 - type: mrr_at_1 value: 8.056000000000001 - type: mrr_at_10 value: 14.155999999999999 - type: mrr_at_100 value: 15.232000000000001 - type: mrr_at_1000 value: 15.308 - type: mrr_at_20 value: 14.780999999999999 - type: mrr_at_3 value: 11.806 - type: mrr_at_5 value: 12.992999999999999 - type: ndcg_at_1 value: 8.056000000000001 - type: ndcg_at_10 value: 16.048000000000002 - type: ndcg_at_100 value: 21.833 - type: ndcg_at_1000 value: 24.282 - type: ndcg_at_20 value: 18.398 - type: ndcg_at_3 value: 11.317 - type: ndcg_at_5 value: 13.319 - type: precision_at_1 value: 8.056000000000001 - type: precision_at_10 value: 3.292 - type: precision_at_100 value: 0.664 - type: precision_at_1000 value: 0.091 - type: precision_at_20 value: 2.181 - type: precision_at_3 value: 5.833 - type: precision_at_5 value: 4.583 - type: recall_at_1 value: 6.412 - type: recall_at_10 value: 26.480999999999998 - type: recall_at_100 value: 53.217999999999996 - type: recall_at_1000 value: 71.528 - type: recall_at_20 value: 35.44 - type: recall_at_3 value: 13.866 - type: recall_at_5 value: 18.519 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (ko) config: ko split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 19.03 - type: map_at_10 value: 30.987 - type: map_at_100 value: 33.248 - type: map_at_1000 value: 33.452 - type: map_at_20 value: 32.298 - type: map_at_3 value: 26.240999999999996 - type: map_at_5 value: 28.899 - type: mrr_at_1 value: 28.638 - type: mrr_at_10 value: 42.082 - type: mrr_at_100 value: 43.034 - type: mrr_at_1000 value: 43.059 - type: mrr_at_20 value: 42.736000000000004 - type: mrr_at_3 value: 38.340999999999994 - type: mrr_at_5 value: 40.548 - type: ndcg_at_1 value: 28.638 - type: ndcg_at_10 value: 39.284 - type: ndcg_at_100 value: 47.157 - type: ndcg_at_1000 value: 49.864000000000004 - type: ndcg_at_20 value: 42.719 - type: ndcg_at_3 value: 32.521 - type: ndcg_at_5 value: 35.57 - type: precision_at_1 value: 28.638 - type: precision_at_10 value: 10.657 - type: precision_at_100 value: 1.8870000000000002 - type: precision_at_1000 value: 0.241 - type: precision_at_20 value: 6.643000000000001 - type: precision_at_3 value: 19.718 - type: precision_at_5 value: 15.493000000000002 - type: recall_at_1 value: 19.03 - type: recall_at_10 value: 51.961999999999996 - type: recall_at_100 value: 79.836 - type: recall_at_1000 value: 95.3 - type: recall_at_20 value: 62.643 - type: recall_at_3 value: 33.1 - type: recall_at_5 value: 41.791 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (korean) config: korean split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 18.131 - type: map_at_10 value: 23.858999999999998 - type: map_at_100 value: 24.507 - type: map_at_1000 value: 24.582 - type: map_at_20 value: 24.152 - type: map_at_3 value: 22.09 - type: map_at_5 value: 22.971 - type: mrr_at_1 value: 20.19 - type: mrr_at_10 value: 26.249 - type: mrr_at_100 value: 26.871000000000002 - type: mrr_at_1000 value: 26.936 - type: mrr_at_20 value: 26.535999999999998 - type: mrr_at_3 value: 24.465999999999998 - type: mrr_at_5 value: 25.356 - type: ndcg_at_1 value: 20.19 - type: ndcg_at_10 value: 27.700000000000003 - type: ndcg_at_100 value: 31.436999999999998 - type: ndcg_at_1000 value: 33.690999999999995 - type: ndcg_at_20 value: 28.716 - type: ndcg_at_3 value: 23.985 - type: ndcg_at_5 value: 25.539 - type: precision_at_1 value: 20.19 - type: precision_at_10 value: 4.181 - type: precision_at_100 value: 0.637 - type: precision_at_1000 value: 0.08499999999999999 - type: precision_at_20 value: 2.316 - type: precision_at_3 value: 10.135 - type: precision_at_5 value: 6.888 - type: recall_at_1 value: 18.131 - type: recall_at_10 value: 37.49 - type: recall_at_100 value: 55.859 - type: recall_at_1000 value: 73.634 - type: recall_at_20 value: 41.291 - type: recall_at_3 value: 27.276 - type: recall_at_5 value: 30.918 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (ru) config: ru split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 12.045 - type: map_at_10 value: 21.751 - type: map_at_100 value: 24.517 - type: map_at_1000 value: 24.726 - type: map_at_20 value: 23.142 - type: map_at_3 value: 17.546 - type: map_at_5 value: 19.555 - type: mrr_at_1 value: 22.900000000000002 - type: mrr_at_10 value: 33.946 - type: mrr_at_100 value: 35.199999999999996 - type: mrr_at_1000 value: 35.233 - type: mrr_at_20 value: 34.791 - type: mrr_at_3 value: 30.099999999999998 - type: mrr_at_5 value: 32.18 - type: ndcg_at_1 value: 22.900000000000002 - type: ndcg_at_10 value: 29.587000000000003 - type: ndcg_at_100 value: 39.934999999999995 - type: ndcg_at_1000 value: 42.857 - type: ndcg_at_20 value: 33.531 - type: ndcg_at_3 value: 23.361 - type: ndcg_at_5 value: 25.485999999999997 - type: precision_at_1 value: 22.900000000000002 - type: precision_at_10 value: 9.370000000000001 - type: precision_at_100 value: 2.1 - type: precision_at_1000 value: 0.263 - type: precision_at_20 value: 6.4399999999999995 - type: precision_at_3 value: 15.867 - type: precision_at_5 value: 12.86 - type: recall_at_1 value: 12.045 - type: recall_at_10 value: 39.612 - type: recall_at_100 value: 76.132 - type: recall_at_1000 value: 92.643 - type: recall_at_20 value: 51.13799999999999 - type: recall_at_3 value: 22.408 - type: recall_at_5 value: 28.794999999999998 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (russian) config: russian split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 12.127 - type: map_at_10 value: 18.472 - type: map_at_100 value: 19.395 - type: map_at_1000 value: 19.477 - type: map_at_20 value: 18.966 - type: map_at_3 value: 16.309 - type: map_at_5 value: 17.53 - type: mrr_at_1 value: 13.568 - type: mrr_at_10 value: 20.04 - type: mrr_at_100 value: 20.928 - type: mrr_at_1000 value: 20.995 - type: mrr_at_20 value: 20.538 - type: mrr_at_3 value: 17.855999999999998 - type: mrr_at_5 value: 19.027 - type: ndcg_at_1 value: 13.568 - type: ndcg_at_10 value: 22.509 - type: ndcg_at_100 value: 27.230999999999998 - type: ndcg_at_1000 value: 29.444 - type: ndcg_at_20 value: 24.277 - type: ndcg_at_3 value: 18.108 - type: ndcg_at_5 value: 20.252 - type: precision_at_1 value: 13.568 - type: precision_at_10 value: 3.769 - type: precision_at_100 value: 0.635 - type: precision_at_1000 value: 0.08499999999999999 - type: precision_at_20 value: 2.271 - type: precision_at_3 value: 8.107000000000001 - type: precision_at_5 value: 5.99 - type: recall_at_1 value: 12.127 - type: recall_at_10 value: 33.617999999999995 - type: recall_at_100 value: 55.662 - type: recall_at_1000 value: 72.697 - type: recall_at_20 value: 40.369 - type: recall_at_3 value: 21.91 - type: recall_at_5 value: 26.985 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (es) config: es split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 8.068 - type: map_at_10 value: 19.563 - type: map_at_100 value: 24.198 - type: map_at_1000 value: 24.532 - type: map_at_20 value: 21.929000000000002 - type: map_at_3 value: 13.652000000000001 - type: map_at_5 value: 16.226 - type: mrr_at_1 value: 30.092999999999996 - type: mrr_at_10 value: 43.312 - type: mrr_at_100 value: 44.230999999999995 - type: mrr_at_1000 value: 44.252 - type: mrr_at_20 value: 43.891000000000005 - type: mrr_at_3 value: 39.428999999999995 - type: mrr_at_5 value: 41.682 - type: ndcg_at_1 value: 30.092999999999996 - type: ndcg_at_10 value: 30.218 - type: ndcg_at_100 value: 43.716 - type: ndcg_at_1000 value: 47.355000000000004 - type: ndcg_at_20 value: 35.268 - type: ndcg_at_3 value: 27.232 - type: ndcg_at_5 value: 26.874 - type: precision_at_1 value: 30.092999999999996 - type: precision_at_10 value: 15.293000000000001 - type: precision_at_100 value: 3.531 - type: precision_at_1000 value: 0.437 - type: precision_at_20 value: 10.693999999999999 - type: precision_at_3 value: 23.868000000000002 - type: precision_at_5 value: 19.938 - type: recall_at_1 value: 8.068 - type: recall_at_10 value: 35.778999999999996 - type: recall_at_100 value: 76.36699999999999 - type: recall_at_1000 value: 94.38499999999999 - type: recall_at_20 value: 48.014 - type: recall_at_3 value: 17.825 - type: recall_at_5 value: 24.163999999999998 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (sw) config: sw split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 12.568999999999999 - type: map_at_10 value: 18.478 - type: map_at_100 value: 19.584 - type: map_at_1000 value: 19.714000000000002 - type: map_at_20 value: 19.073999999999998 - type: map_at_3 value: 16.275000000000002 - type: map_at_5 value: 17.53 - type: mrr_at_1 value: 20.124 - type: mrr_at_10 value: 25.951 - type: mrr_at_100 value: 26.812 - type: mrr_at_1000 value: 26.876 - type: mrr_at_20 value: 26.41 - type: mrr_at_3 value: 23.893 - type: mrr_at_5 value: 25.055 - type: ndcg_at_1 value: 20.124 - type: ndcg_at_10 value: 23.064999999999998 - type: ndcg_at_100 value: 28.193 - type: ndcg_at_1000 value: 31.313000000000002 - type: ndcg_at_20 value: 24.921 - type: ndcg_at_3 value: 19.436 - type: ndcg_at_5 value: 20.990000000000002 - type: precision_at_1 value: 20.124 - type: precision_at_10 value: 5.021 - type: precision_at_100 value: 0.927 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_20 value: 3.1329999999999996 - type: precision_at_3 value: 10.719 - type: precision_at_5 value: 8.091 - type: recall_at_1 value: 12.568999999999999 - type: recall_at_10 value: 29.727999999999998 - type: recall_at_100 value: 50.70099999999999 - type: recall_at_1000 value: 71.856 - type: recall_at_20 value: 35.831 - type: recall_at_3 value: 19.758 - type: recall_at_5 value: 24.035999999999998 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (swahili) config: swahili split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 15.597 - type: map_at_10 value: 23.596 - type: map_at_100 value: 24.32 - type: map_at_1000 value: 24.377 - type: map_at_20 value: 23.913999999999998 - type: map_at_3 value: 21.484 - type: map_at_5 value: 22.647000000000002 - type: mrr_at_1 value: 16.866 - type: mrr_at_10 value: 24.633 - type: mrr_at_100 value: 25.291000000000004 - type: mrr_at_1000 value: 25.346999999999998 - type: mrr_at_20 value: 24.907 - type: mrr_at_3 value: 22.587 - type: mrr_at_5 value: 23.677 - type: ndcg_at_1 value: 16.866 - type: ndcg_at_10 value: 27.749000000000002 - type: ndcg_at_100 value: 31.769 - type: ndcg_at_1000 value: 33.61 - type: ndcg_at_20 value: 28.849000000000004 - type: ndcg_at_3 value: 23.462 - type: ndcg_at_5 value: 25.491000000000003 - type: precision_at_1 value: 16.866 - type: precision_at_10 value: 4.343 - type: precision_at_100 value: 0.649 - type: precision_at_1000 value: 0.08099999999999999 - type: precision_at_20 value: 2.41 - type: precision_at_3 value: 10.149 - type: precision_at_5 value: 7.134 - type: recall_at_1 value: 15.597 - type: recall_at_10 value: 39.652 - type: recall_at_100 value: 59.477999999999994 - type: recall_at_1000 value: 74.35300000000001 - type: recall_at_20 value: 43.905 - type: recall_at_3 value: 28.109 - type: recall_at_5 value: 32.934999999999995 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (te) config: te split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 21.236 - type: map_at_10 value: 29.841 - type: map_at_100 value: 30.729 - type: map_at_1000 value: 30.817 - type: map_at_20 value: 30.331999999999997 - type: map_at_3 value: 27.154 - type: map_at_5 value: 28.719 - type: mrr_at_1 value: 21.618000000000002 - type: mrr_at_10 value: 30.192999999999998 - type: mrr_at_100 value: 31.067 - type: mrr_at_1000 value: 31.148999999999997 - type: mrr_at_20 value: 30.668 - type: mrr_at_3 value: 27.576 - type: mrr_at_5 value: 29.110000000000003 - type: ndcg_at_1 value: 21.618000000000002 - type: ndcg_at_10 value: 34.633 - type: ndcg_at_100 value: 39.425 - type: ndcg_at_1000 value: 41.762 - type: ndcg_at_20 value: 36.428 - type: ndcg_at_3 value: 29.189 - type: ndcg_at_5 value: 31.995 - type: precision_at_1 value: 21.618000000000002 - type: precision_at_10 value: 5.1209999999999996 - type: precision_at_100 value: 0.751 - type: precision_at_1000 value: 0.094 - type: precision_at_20 value: 2.923 - type: precision_at_3 value: 11.876000000000001 - type: precision_at_5 value: 8.551 - type: recall_at_1 value: 21.236 - type: recall_at_10 value: 49.436 - type: recall_at_100 value: 72.94699999999999 - type: recall_at_1000 value: 91.405 - type: recall_at_20 value: 56.562 - type: recall_at_3 value: 34.682 - type: recall_at_5 value: 41.445 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (telugu) config: telugu split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 16.872999999999998 - type: map_at_10 value: 26.543 - type: map_at_100 value: 27.3 - type: map_at_1000 value: 27.389999999999997 - type: map_at_20 value: 26.883000000000003 - type: map_at_3 value: 23.735999999999997 - type: map_at_5 value: 25.113999999999997 - type: mrr_at_1 value: 17.492 - type: mrr_at_10 value: 27.233 - type: mrr_at_100 value: 27.950999999999997 - type: mrr_at_1000 value: 28.037 - type: mrr_at_20 value: 27.556000000000004 - type: mrr_at_3 value: 24.458 - type: mrr_at_5 value: 25.874999999999996 - type: ndcg_at_1 value: 17.492 - type: ndcg_at_10 value: 32.013999999999996 - type: ndcg_at_100 value: 36.299 - type: ndcg_at_1000 value: 38.868 - type: ndcg_at_20 value: 33.238 - type: ndcg_at_3 value: 26.133 - type: ndcg_at_5 value: 28.632999999999996 - type: precision_at_1 value: 17.492 - type: precision_at_10 value: 5.108 - type: precision_at_100 value: 0.735 - type: precision_at_1000 value: 0.095 - type: precision_at_20 value: 2.81 - type: precision_at_3 value: 11.3 - type: precision_at_5 value: 8.019 - type: recall_at_1 value: 16.872999999999998 - type: recall_at_10 value: 48.684 - type: recall_at_100 value: 70.04599999999999 - type: recall_at_1000 value: 90.635 - type: recall_at_20 value: 53.483000000000004 - type: recall_at_3 value: 32.353 - type: recall_at_5 value: 38.39 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (th) config: th split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 19.205 - type: map_at_10 value: 32.704 - type: map_at_100 value: 34.519 - type: map_at_1000 value: 34.634 - type: map_at_20 value: 33.762 - type: map_at_3 value: 27.992 - type: map_at_5 value: 30.354999999999997 - type: mrr_at_1 value: 27.558 - type: mrr_at_10 value: 40.933 - type: mrr_at_100 value: 41.916 - type: mrr_at_1000 value: 41.946 - type: mrr_at_20 value: 41.54 - type: mrr_at_3 value: 37.312 - type: mrr_at_5 value: 39.393 - type: ndcg_at_1 value: 27.558 - type: ndcg_at_10 value: 41.038999999999994 - type: ndcg_at_100 value: 48.076 - type: ndcg_at_1000 value: 49.946 - type: ndcg_at_20 value: 44.03 - type: ndcg_at_3 value: 33.013999999999996 - type: ndcg_at_5 value: 36.519 - type: precision_at_1 value: 27.558 - type: precision_at_10 value: 9.523 - type: precision_at_100 value: 1.52 - type: precision_at_1000 value: 0.178 - type: precision_at_20 value: 5.778 - type: precision_at_3 value: 18.963 - type: precision_at_5 value: 14.379 - type: recall_at_1 value: 19.205 - type: recall_at_10 value: 56.94200000000001 - type: recall_at_100 value: 84.937 - type: recall_at_1000 value: 96.86399999999999 - type: recall_at_20 value: 66.719 - type: recall_at_3 value: 36.536 - type: recall_at_5 value: 44.854 - task: type: retrieval dataset: type: mteb/mrtydi name: MTEB MrTydiRetrieval (thai) config: thai split: test revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7 metrics: - type: map_at_1 value: 17.913 - type: map_at_10 value: 29.006999999999998 - type: map_at_100 value: 30.184 - type: map_at_1000 value: 30.249 - type: map_at_20 value: 29.799999999999997 - type: map_at_3 value: 25.14 - type: map_at_5 value: 27.172 - type: mrr_at_1 value: 19.664 - type: mrr_at_10 value: 30.891000000000002 - type: mrr_at_100 value: 31.896 - type: mrr_at_1000 value: 31.951 - type: mrr_at_20 value: 31.566 - type: mrr_at_3 value: 27.128999999999998 - type: mrr_at_5 value: 29.255 - type: ndcg_at_1 value: 19.664 - type: ndcg_at_10 value: 35.674 - type: ndcg_at_100 value: 40.969 - type: ndcg_at_1000 value: 42.698 - type: ndcg_at_20 value: 38.345 - type: ndcg_at_3 value: 27.826 - type: ndcg_at_5 value: 31.493 - type: precision_at_1 value: 19.664 - type: precision_at_10 value: 6.143 - type: precision_at_100 value: 0.8909999999999999 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 3.66 - type: precision_at_3 value: 12.353 - type: precision_at_5 value: 9.411999999999999 - type: recall_at_1 value: 17.913 - type: recall_at_10 value: 54.705999999999996 - type: recall_at_100 value: 78.557 - type: recall_at_1000 value: 91.835 - type: recall_at_20 value: 64.846 - type: recall_at_3 value: 33.669 - type: recall_at_5 value: 42.297000000000004 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (yo) config: yo split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 7.002999999999999 - type: map_at_10 value: 9.567 - type: map_at_100 value: 10.126 - type: map_at_1000 value: 10.209 - type: map_at_20 value: 9.944 - type: map_at_3 value: 8.929 - type: map_at_5 value: 8.929 - type: mrr_at_1 value: 7.563000000000001 - type: mrr_at_10 value: 10.503 - type: mrr_at_100 value: 11.151 - type: mrr_at_1000 value: 11.232000000000001 - type: mrr_at_20 value: 10.965 - type: mrr_at_3 value: 9.804 - type: mrr_at_5 value: 9.804 - type: ndcg_at_1 value: 7.563000000000001 - type: ndcg_at_10 value: 11.304 - type: ndcg_at_100 value: 14.526 - type: ndcg_at_1000 value: 17.253 - type: ndcg_at_20 value: 12.766 - type: ndcg_at_3 value: 9.797 - type: ndcg_at_5 value: 9.754999999999999 - type: precision_at_1 value: 7.563000000000001 - type: precision_at_10 value: 1.765 - type: precision_at_100 value: 0.378 - type: precision_at_1000 value: 0.064 - type: precision_at_20 value: 1.261 - type: precision_at_3 value: 4.202 - type: precision_at_5 value: 2.521 - type: recall_at_1 value: 7.002999999999999 - type: recall_at_10 value: 16.036 - type: recall_at_100 value: 31.302999999999997 - type: recall_at_1000 value: 53.010999999999996 - type: recall_at_20 value: 21.429000000000002 - type: recall_at_3 value: 11.415000000000001 - type: recall_at_5 value: 11.415000000000001 - task: type: retrieval dataset: type: mteb/miracl-hard-negatives name: MTEB MIRACLRetrievalHardNegatives (zh) config: zh split: dev revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb metrics: - type: map_at_1 value: 8.341999999999999 - type: map_at_10 value: 18.393 - type: map_at_100 value: 21.796 - type: map_at_1000 value: 21.932 - type: map_at_20 value: 20.238999999999997 - type: map_at_3 value: 13.386999999999999 - type: map_at_5 value: 15.568000000000001 - type: mrr_at_1 value: 15.522 - type: mrr_at_10 value: 28.386 - type: mrr_at_100 value: 29.906 - type: mrr_at_1000 value: 29.925 - type: mrr_at_20 value: 29.413 - type: mrr_at_3 value: 23.707 - type: mrr_at_5 value: 26.073 - type: ndcg_at_1 value: 15.522 - type: ndcg_at_10 value: 26.904 - type: ndcg_at_100 value: 39.336 - type: ndcg_at_1000 value: 41.244 - type: ndcg_at_20 value: 32.04 - type: ndcg_at_3 value: 18.34 - type: ndcg_at_5 value: 21.29 - type: precision_at_1 value: 15.522 - type: precision_at_10 value: 9.084 - type: precision_at_100 value: 2.1149999999999998 - type: precision_at_1000 value: 0.244 - type: precision_at_20 value: 6.5009999999999994 - type: precision_at_3 value: 13.232 - type: precision_at_5 value: 11.552 - type: recall_at_1 value: 8.341999999999999 - type: recall_at_10 value: 40.553 - type: recall_at_100 value: 86.33 - type: recall_at_1000 value: 97.24199999999999 - type: recall_at_20 value: 56.589999999999996 - type: recall_at_3 value: 18.82 - type: recall_at_5 value: 26.304 base_model: FacebookAI/xlm-roberta-base widget: - source_sentence: how to get rid of an iron mark sentences: - Quick Answer. A good remedy for removing shiny iron scorch marks from fabric is to use hydrogen peroxide with ammonia. Other options for removing shiny scorch marks include laundry detergent, bleach or vinegar, but it depends on how quickly the scorch is remedied. Keep Learning. - Largely due to declining sales, in 2006, Tommy Hilfiger sold his company for $1.6 billion, or $16.80 a share, to Apax Partners, a private investment company. In March 2010, Phillips-Van Heusen, owner of Calvin Klein, bought the Tommy Hilfiger Corporation for $3 billion. - You need to heat continuous until it turns to a paste. Use this simple mixture by rubbing it right onto the soleplate. Now, make sure that the iron is unplugged before cleaning it. After rubbing the mixture, with the help of a nice, clean cloth wipe the unsightly scorch marks off your iron. 5 people found this useful. - source_sentence: how much does ipl facial cost sentences: - "Prices usually vary according to the ipl treatment size. The average cost for\ \ a FotoFacial/IPL is $350 - $600 each treatment, depending on the body part.A\ \ consultation with a fotofacial specialist and the number of treatments needed\ \ will determine your ipl treatment cost.s discussed above, IPL does not damage\ \ the skin surface, unlike dermabrasion and laser resurfacing. Therefore, there\ \ is virtually no recovery time.â\x80\x9D Treatments take approximately 30-45\ \ minutes. Patients can apply makeup before leaving the office and return to work\ \ the same day." - "â\x80\x94N.I., South Kingstown, Rhode IslandGenerally, the oven temperature will\ \ not need to be adjusted when baking mini or jumbo muffins, but the baking time\ \ will most likely need to be altered. Mini muffins will take anywhere from 10\ \ to 15 minutes while jumbo muffins will bake from 20 to 40 minutes.Check jumbo\ \ muffins for doneness after 20 minutes, then every 5 to 10 minutes. Keep in mind\ \ that the baking time will vary according to the recipe.The variation is due\ \ to the oven temperature and the amount of batter in each muffin cup.heck jumbo\ \ muffins for doneness after 20 minutes, then every 5 to 10 minutes. Keep in mind\ \ that the baking time will vary according to the recipe. The variation is due\ \ to the oven temperature and the amount of batter in each muffin cup." - Prices usually vary according to the ipl treatment size. The average cost for a FotoFacial/IPL is $350 - $600 each treatment, depending on the body part.A consultation with a fotofacial specialist and the number of treatments needed will determine your ipl treatment cost.PL, which stands for intensed pulsed light, is non-ablative meaning that is does not damage the surface of the skin. The intense light is delivered to the deeper parts of the skin (dermis) and leaves the superficial aspect of the skin (epidermis) untouched. - source_sentence: who voiced scooby doo sentences: - Don Messick originated the voice of Scooby-Doo, and was the voice of the character for over 25 years until his retirement from voice acting in 1996 (he subsequently passed away the following year).rank Welker's Scooby-Doo voice is pretty much identical to the voice he used for Brain on Inspector Gadget.. Hadley Kay and Neil Fanning are the worst, IMO... - because als symptoms include fatigue muscle weakness and muscle twitches early on it can look like other very treatable illnesses one that commonly comes up is lyme disease an infectious disease resulting from a tick bite unlike als lyme is usually treatable with antibiotics lyme disease does not cause als and generally in a diagnostic workup a neurologist can easily separate als from lyme infections either clinically or with testing - "Curse Of The Lake Monster while Frank Welker voices him. 1 Don Messick (1969â\x80\ \x931996) 2 Hadley Kay (Johnny Bravo) 3 Scott Innes (1998â\x80\x932001) Frank\ \ Welker (2002â\x80\x93present plus Scooby- 1 Doo! Neil Fanning (2002 and 2004\ \ live-action films) Dave Coulier(2005 in Robot 1 Chicken) In Denmark, Scooby\ \ Doo is voiced by Lars Thiesgaard." - source_sentence: track lighting that can be mounted on wall sentences: - Madison is one of 14 Community Plan areas in the Metro Nashville-Davidson County area for which zoning and land use planning is done. The 2015-updated Community Plan for Madison, an 89-page document adopted by the Metropolitan Planning Commission, was updated in 2015 as part of NashvilleNext's long-term planning. - This three-light plug-in LED track kit can be surface-mounted anywhere in a room as the power feed cord eliminates the need for a ...junction box. Quick and easy to install, it features three 12 watt LED bullet heads that pivot in a cradle and produce a spotlight beam of energy-saving light. - This white finish, three-light LED track kit can be surface-mounted or suspended from the ceiling with pendant lighting accessorie...s. A power feed cord and plug lets you install it easily without the need for a junction box. Arrange the three,... - source_sentence: Most Common Apple Varieties sentences: - "Well, rest easy, because this condensed list of the 18 most popular apple varieties\ \ breaks down the information every apple eater should knowâ\x80\x94how to cook\ \ them, best recipes, and when they are in season. Red Delicious: A popular eating\ \ apple that looks just how we all imagine an apple should." - Here's a look at the top 50 draft-eligible prospects for next year, led by quarterback Connor Cook, defensive lineman Joey Bosa, cornerback Vernon Hargreaves, and offensive tackle Ronnie Stanley and Laremy Tunsil. - The most popular apple varieties are Cortland, Red Delicious, Golden Delicious, Empire, Fuji, Gala, Ida Red, Macoun, McIntosh, Northern Spy, and Winesap. Olwen Woodier also offers descriptions for an additional 20 varieties of apples in this very useful and informative cookbook. Cortland. pipeline_tag: sentence-similarity library_name: sentence-transformers license: mit --- # SentenceTransformer based on FacebookAI/xlm-roberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** [MS MARCO Hard Negatives](https://sbert.net/examples/training/ms_marco/README.html) (mined by a MiniLM cross-encoder) - **License:** MIT ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("PaDaS-Lab/xlm-roberta-base-msmarco") # Run inference sentences = [ 'Most Common Apple Varieties', 'The most popular apple varieties are Cortland, Red Delicious, Golden Delicious, Empire, Fuji, Gala, Ida Red, Macoun, McIntosh, Northern Spy, and Winesap. Olwen Woodier also offers descriptions for an additional 20 varieties of apples in this very useful and informative cookbook. Cortland.', 'Well, rest easy, because this condensed list of the 18 most popular apple varieties breaks down the information every apple eater should knowâ\x80\x94how to cook them, best recipes, and when they are in season. Red Delicious: A popular eating apple that looks just how we all imagine an apple should.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 502,912 training samples * Columns: sentence_0, sentence_1, sentence_2, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | label | |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------| | type | string | string | string | float | | details | | | | | * Samples: | sentence_0 | sentence_1 | sentence_2 | label | |:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | how long are bank issued checks good for | Your mom is correct....most checks are good for anywhere between 180 days up to 1 year. Sorry, but you probably won't be able to cash those checks, although it never hurts to check with your bank on the issue. DH · 9 years ago. | Non-local personal and business checks. If the check is from a bank in a different federal reserve district than the depositing bank, it can be held for 5 business days under normal circumstances. Exceptions for new customers during the first 30 days. Banks are not required to give next day ability on the first $100 of deposits, and both local and non-local personal and business checks can be held for a maximum of 11 business days. | 2.6526598930358887 | | 11:11 meaning | 11-11-11 11:11:11 example. 11-11 11:11 example. Numerologists believe that events linked to the time 11:11 appear more often than can be explained by chance or coincidence. This belief is related to the concept of synchronicity. Some authors claim that seeing 11:11 on a clock is an auspicious sign. | Sometimes it's difficult to describe what seeing the 11:11 means, because it is a personal experience for everyone. If you feel you are having these experiences for a reason, then it might be that only you will know what these number prompts and wake-up calls mean. | -1.3284940719604492 | | did someone from pawn stars die | Did someone from pawn stars on history channel die? kgb answers » Arts & Entertainment » Actors and Actresses » Did someone from pawn stars on history channel die? None from the actors & cast of Pawn Stars died. There was a rumor that Leonard Shaffer, a coin expert, died but it is not true. He is alive & well. Tags: pawn stars, lists of actors. | Austin Russell, also known as Chumlee, star of History's reality series Pawn Stars, has died from an apparent heart attack, sources confirm to eBuzzd. | 1.7131614685058594 | * Loss: [MarginMSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#marginmseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 30 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 30 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:-------:|:------:|:-------------:| | 0.0636 | 500 | 92.5416 | | 0.1273 | 1000 | 20.6659 | | 0.1909 | 1500 | 14.7631 | | 0.2545 | 2000 | 14.3025 | | 0.3181 | 2500 | 13.5257 | | 0.3818 | 3000 | 12.8666 | | 0.4454 | 3500 | 12.397 | | 0.5090 | 4000 | 12.2718 | | 0.5727 | 4500 | 11.539 | | 0.6363 | 5000 | 11.1145 | | 0.6999 | 5500 | 11.1232 | | 0.7636 | 6000 | 10.6021 | | 0.8272 | 6500 | 10.4115 | | 0.8908 | 7000 | 10.4529 | | 0.9544 | 7500 | 10.1329 | | 1.0181 | 8000 | 10.1367 | | 1.0817 | 8500 | 9.5914 | | 1.1453 | 9000 | 9.2799 | | 1.2090 | 9500 | 9.266 | | 1.2726 | 10000 | 9.1661 | | 1.3362 | 10500 | 8.954 | | 1.3998 | 11000 | 8.9562 | | 1.4635 | 11500 | 9.4717 | | 1.5271 | 12000 | 8.6758 | | 1.5907 | 12500 | 8.87 | | 1.6544 | 13000 | 8.5826 | | 1.7180 | 13500 | 8.4827 | | 1.7816 | 14000 | 8.5306 | | 1.8453 | 14500 | 8.182 | | 1.9089 | 15000 | 8.3592 | | 1.9725 | 15500 | 8.3879 | | 2.0361 | 16000 | 7.4399 | | 2.0998 | 16500 | 7.0406 | | 2.1634 | 17000 | 6.89 | | 2.2270 | 17500 | 6.8651 | | 2.2907 | 18000 | 6.8461 | | 2.3543 | 18500 | 6.7663 | | 2.4179 | 19000 | 6.9313 | | 2.4815 | 19500 | 6.9688 | | 2.5452 | 20000 | 6.7821 | | 2.6088 | 20500 | 6.9468 | | 2.6724 | 21000 | 6.731 | | 2.7361 | 21500 | 6.649 | | 2.7997 | 22000 | 6.7055 | | 2.8633 | 22500 | 6.7744 | | 2.9270 | 23000 | 6.9481 | | 2.9906 | 23500 | 6.5967 | | 3.0542 | 24000 | 5.7351 | | 3.1178 | 24500 | 5.4125 | | 3.1815 | 25000 | 5.4095 | | 3.2451 | 25500 | 5.4253 | | 3.3087 | 26000 | 5.3774 | | 3.3724 | 26500 | 5.5277 | | 3.4360 | 27000 | 5.4516 | | 3.4996 | 27500 | 5.322 | | 3.5632 | 28000 | 5.5531 | | 3.6269 | 28500 | 5.5238 | | 3.6905 | 29000 | 5.5992 | | 3.7541 | 29500 | 5.5351 | | 3.8178 | 30000 | 5.3985 | | 3.8814 | 30500 | 5.4313 | | 3.9450 | 31000 | 5.4173 | | 4.0087 | 31500 | 5.2333 | | 4.0723 | 32000 | 4.3352 | | 4.1359 | 32500 | 4.3442 | | 4.1995 | 33000 | 4.3288 | | 4.2632 | 33500 | 4.367 | | 4.3268 | 34000 | 4.4607 | | 4.3904 | 34500 | 4.4461 | | 4.4541 | 35000 | 4.6218 | | 4.5177 | 35500 | 4.4249 | | 4.5813 | 36000 | 4.4129 | | 4.6449 | 36500 | 4.4065 | | 4.7086 | 37000 | 4.5452 | | 4.7722 | 37500 | 4.5411 | | 4.8358 | 38000 | 4.5423 | | 4.8995 | 38500 | 4.4942 | | 4.9631 | 39000 | 4.5332 | | 5.0267 | 39500 | 4.0759 | | 5.0904 | 40000 | 3.6274 | | 5.1540 | 40500 | 3.6795 | | 5.2176 | 41000 | 3.6741 | | 5.2812 | 41500 | 3.7396 | | 5.3449 | 42000 | 3.6839 | | 5.4085 | 42500 | 3.732 | | 5.4721 | 43000 | 3.6557 | | 5.5358 | 43500 | 3.6925 | | 5.5994 | 44000 | 3.7149 | | 5.6630 | 44500 | 3.6744 | | 5.7266 | 45000 | 3.7669 | | 5.7903 | 45500 | 3.651 | | 5.8539 | 46000 | 3.721 | | 5.9175 | 46500 | 3.7012 | | 5.9812 | 47000 | 3.7294 | | 6.0448 | 47500 | 3.2432 | | 6.1084 | 48000 | 3.0295 | | 6.1721 | 48500 | 3.0364 | | 6.2357 | 49000 | 3.0687 | | 6.2993 | 49500 | 3.064 | | 6.3629 | 50000 | 3.112 | | 6.4266 | 50500 | 3.1438 | | 6.4902 | 51000 | 3.0733 | | 6.5538 | 51500 | 3.1719 | | 6.6175 | 52000 | 3.1355 | | 6.6811 | 52500 | 3.1612 | | 6.7447 | 53000 | 3.1938 | | 6.8083 | 53500 | 3.1375 | | 6.8720 | 54000 | 3.1969 | | 6.9356 | 54500 | 3.2214 | | 6.9992 | 55000 | 3.1364 | | 7.0629 | 55500 | 2.63 | | 7.1265 | 56000 | 2.5451 | | 7.1901 | 56500 | 2.644 | | 7.2538 | 57000 | 2.6482 | | 7.3174 | 57500 | 2.6017 | | 7.3810 | 58000 | 2.6626 | | 7.4446 | 58500 | 2.6698 | | 7.5083 | 59000 | 2.6595 | | 7.5719 | 59500 | 2.6683 | | 7.6355 | 60000 | 2.7187 | | 7.6992 | 60500 | 2.6213 | | 7.7628 | 61000 | 2.7119 | | 7.8264 | 61500 | 2.739 | | 7.8900 | 62000 | 2.686 | | 7.9537 | 62500 | 2.7295 | | 8.0173 | 63000 | 2.6062 | | 8.0809 | 63500 | 2.2272 | | 8.1446 | 64000 | 2.2692 | | 8.2082 | 64500 | 2.3135 | | 8.2718 | 65000 | 2.2546 | | 8.3355 | 65500 | 2.2882 | | 8.3991 | 66000 | 2.2749 | | 8.4627 | 66500 | 2.363 | | 8.5263 | 67000 | 2.2923 | | 8.5900 | 67500 | 2.3275 | | 8.6536 | 68000 | 2.3738 | | 8.7172 | 68500 | 2.3416 | | 8.7809 | 69000 | 2.3851 | | 8.8445 | 69500 | 2.3356 | | 8.9081 | 70000 | 2.3598 | | 8.9717 | 70500 | 2.4272 | | 9.0354 | 71000 | 2.141 | | 9.0990 | 71500 | 2.001 | | 9.1626 | 72000 | 2.014 | | 9.2263 | 72500 | 1.9826 | | 9.2899 | 73000 | 1.995 | | 9.3535 | 73500 | 2.0097 | | 9.4172 | 74000 | 2.0412 | | 9.4808 | 74500 | 2.0144 | | 9.5444 | 75000 | 2.0653 | | 9.6080 | 75500 | 2.022 | | 9.6717 | 76000 | 2.0327 | | 9.7353 | 76500 | 2.0596 | | 9.7989 | 77000 | 2.0761 | | 9.8626 | 77500 | 2.1245 | | 9.9262 | 78000 | 2.1062 | | 9.9898 | 78500 | 2.1186 | | 10.0534 | 79000 | 1.8283 | | 10.1171 | 79500 | 1.7627 | | 10.1807 | 80000 | 1.7775 | | 10.2443 | 80500 | 1.7865 | | 10.3080 | 81000 | 1.8018 | | 10.3716 | 81500 | 1.7851 | | 10.4352 | 82000 | 1.8085 | | 10.4989 | 82500 | 1.8293 | | 10.5625 | 83000 | 1.8549 | | 10.6261 | 83500 | 1.8531 | | 10.6897 | 84000 | 1.8538 | | 10.7534 | 84500 | 1.8814 | | 10.8170 | 85000 | 1.8576 | | 10.8806 | 85500 | 1.8516 | | 10.9443 | 86000 | 1.8555 | | 11.0079 | 86500 | 1.8631 | | 11.0715 | 87000 | 1.6189 | | 11.1351 | 87500 | 1.6143 | | 11.1988 | 88000 | 1.6246 | | 11.2624 | 88500 | 1.5997 | | 11.3260 | 89000 | 1.646 | | 11.3897 | 89500 | 1.6323 | | 11.4533 | 90000 | 1.6623 | | 11.5169 | 90500 | 1.6544 | | 11.5806 | 91000 | 1.6671 | | 11.6442 | 91500 | 1.6742 | | 11.7078 | 92000 | 1.6409 | | 11.7714 | 92500 | 1.6504 | | 11.8351 | 93000 | 1.6791 | | 11.8987 | 93500 | 1.6923 | | 11.9623 | 94000 | 1.697 | | 12.0260 | 94500 | 1.6136 | | 12.0896 | 95000 | 1.4437 | | 12.1532 | 95500 | 1.49 | | 12.2168 | 96000 | 1.4567 | | 12.2805 | 96500 | 1.5007 | | 12.3441 | 97000 | 1.4826 | | 12.4077 | 97500 | 1.4668 | | 12.4714 | 98000 | 1.5009 | | 12.5350 | 98500 | 1.5008 | | 12.5986 | 99000 | 1.5336 | | 12.6623 | 99500 | 1.5057 | | 12.7259 | 100000 | 1.5081 | | 12.7895 | 100500 | 1.5402 | | 12.8531 | 101000 | 1.5519 | | 12.9168 | 101500 | 1.5171 | | 12.9804 | 102000 | 1.5249 | | 13.0440 | 102500 | 1.4117 | | 13.1077 | 103000 | 1.3524 | | 13.1713 | 103500 | 1.3564 | | 13.2349 | 104000 | 1.3483 | | 13.2985 | 104500 | 1.386 | | 13.3622 | 105000 | 1.3723 | | 13.4258 | 105500 | 1.3933 | | 13.4894 | 106000 | 1.3672 | | 13.5531 | 106500 | 1.3796 | | 13.6167 | 107000 | 1.3637 | | 13.6803 | 107500 | 1.4061 | | 13.7440 | 108000 | 1.3897 | | 13.8076 | 108500 | 1.4342 | | 13.8712 | 109000 | 1.3821 | | 13.9348 | 109500 | 1.411 | | 13.9985 | 110000 | 1.4214 | | 14.0621 | 110500 | 1.2551 | | 14.1257 | 111000 | 1.2366 | | 14.1894 | 111500 | 1.2553 | | 14.2530 | 112000 | 1.2553 | | 14.3166 | 112500 | 1.2624 | | 14.3802 | 113000 | 1.2771 | | 14.4439 | 113500 | 1.2744 | | 14.5075 | 114000 | 1.2616 | | 14.5711 | 114500 | 1.2744 | | 14.6348 | 115000 | 1.2705 | | 14.6984 | 115500 | 1.3005 | | 14.7620 | 116000 | 1.3013 | | 14.8257 | 116500 | 1.298 | | 14.8893 | 117000 | 1.2972 | | 14.9529 | 117500 | 1.277 | | 15.0165 | 118000 | 1.2718 | | 15.0802 | 118500 | 1.1697 | | 15.1438 | 119000 | 1.1819 | | 15.2074 | 119500 | 1.1916 | | 15.2711 | 120000 | 1.1829 | | 15.3347 | 120500 | 1.1632 | | 15.3983 | 121000 | 1.1809 | | 15.4619 | 121500 | 1.1913 | | 15.5256 | 122000 | 1.1916 | | 15.5892 | 122500 | 1.1969 | | 15.6528 | 123000 | 1.1929 | | 15.7165 | 123500 | 1.2086 | | 15.7801 | 124000 | 1.1864 | | 15.8437 | 124500 | 1.2068 | | 15.9074 | 125000 | 1.2253 | | 15.9710 | 125500 | 1.1963 | | 16.0346 | 126000 | 1.1585 | | 16.0982 | 126500 | 1.0834 | | 16.1619 | 127000 | 1.0937 | | 16.2255 | 127500 | 1.0995 | | 16.2891 | 128000 | 1.0787 | | 16.3528 | 128500 | 1.1217 | | 16.4164 | 129000 | 1.1185 | | 16.4800 | 129500 | 1.1203 | | 16.5436 | 130000 | 1.1201 | | 16.6073 | 130500 | 1.125 | | 16.6709 | 131000 | 1.1214 | | 16.7345 | 131500 | 1.1228 | | 16.7982 | 132000 | 1.1381 | | 16.8618 | 132500 | 1.1414 | | 16.9254 | 133000 | 1.123 | | 16.9891 | 133500 | 1.1003 | | 17.0527 | 134000 | 1.0447 | | 17.1163 | 134500 | 1.036 | | 17.1799 | 135000 | 1.0264 | | 17.2436 | 135500 | 1.0375 | | 17.3072 | 136000 | 1.0509 | | 17.3708 | 136500 | 1.0452 | | 17.4345 | 137000 | 1.0519 | | 17.4981 | 137500 | 1.0498 | | 17.5617 | 138000 | 1.0514 | | 17.6253 | 138500 | 1.054 | | 17.6890 | 139000 | 1.0457 | | 17.7526 | 139500 | 1.0582 | | 17.8162 | 140000 | 1.0566 | | 17.8799 | 140500 | 1.0644 | | 17.9435 | 141000 | 1.0579 | | 18.0071 | 141500 | 1.0647 | | 18.0708 | 142000 | 0.9704 | | 18.1344 | 142500 | 0.9787 | | 18.1980 | 143000 | 0.9875 | | 18.2616 | 143500 | 0.987 | | 18.3253 | 144000 | 0.9834 | | 18.3889 | 144500 | 0.999 | | 18.4525 | 145000 | 0.9872 | | 18.5162 | 145500 | 0.9851 | | 18.5798 | 146000 | 0.9986 | | 18.6434 | 146500 | 0.9853 | | 18.7071 | 147000 | 0.9973 | | 18.7707 | 147500 | 0.988 | | 18.8343 | 148000 | 0.999 | | 18.8979 | 148500 | 0.9899 | | 18.9616 | 149000 | 1.0053 | | 19.0252 | 149500 | 0.9802 | | 19.0888 | 150000 | 0.9301 | | 19.1525 | 150500 | 0.9295 | | 19.2161 | 151000 | 0.9334 | | 19.2797 | 151500 | 0.9503 | | 19.3433 | 152000 | 0.9161 | | 19.4070 | 152500 | 0.9433 | | 19.4706 | 153000 | 0.9376 | | 19.5342 | 153500 | 0.9274 | | 19.5979 | 154000 | 0.9414 | | 19.6615 | 154500 | 0.94 | | 19.7251 | 155000 | 0.9344 | | 19.7888 | 155500 | 0.9464 | | 19.8524 | 156000 | 0.9583 | | 19.9160 | 156500 | 0.953 | | 19.9796 | 157000 | 0.9481 | | 20.0433 | 157500 | 0.8982 | | 20.1069 | 158000 | 0.8974 | | 20.1705 | 158500 | 0.9022 | | 20.2342 | 159000 | 0.8923 | | 20.2978 | 159500 | 0.8935 | | 20.3614 | 160000 | 0.8917 | | 20.4250 | 160500 | 0.9021 | | 20.4887 | 161000 | 0.8978 | | 20.5523 | 161500 | 0.9078 | | 20.6159 | 162000 | 0.903 | | 20.6796 | 162500 | 0.8989 | | 20.7432 | 163000 | 0.9023 | | 20.8068 | 163500 | 0.8918 | | 20.8705 | 164000 | 0.8968 | | 20.9341 | 164500 | 0.8977 | | 20.9977 | 165000 | 0.9035 | | 21.0613 | 165500 | 0.8347 | | 21.1250 | 166000 | 0.8415 | | 21.1886 | 166500 | 0.8472 | | 21.2522 | 167000 | 0.8663 | | 21.3159 | 167500 | 0.8633 | | 21.3795 | 168000 | 0.8569 | | 21.4431 | 168500 | 0.8529 | | 21.5067 | 169000 | 0.8485 | | 21.5704 | 169500 | 0.8759 | | 21.6340 | 170000 | 0.8667 | | 21.6976 | 170500 | 0.8615 | | 21.7613 | 171000 | 0.8623 | | 21.8249 | 171500 | 0.8613 | | 21.8885 | 172000 | 0.8515 | | 21.9522 | 172500 | 0.8615 | | 22.0158 | 173000 | 0.8457 | | 22.0794 | 173500 | 0.8106 | | 22.1430 | 174000 | 0.8109 | | 22.2067 | 174500 | 0.8108 | | 22.2703 | 175000 | 0.8197 | | 22.3339 | 175500 | 0.8165 | | 22.3976 | 176000 | 0.8289 | | 22.4612 | 176500 | 0.8288 | | 22.5248 | 177000 | 0.8145 | | 22.5884 | 177500 | 0.8249 | | 22.6521 | 178000 | 0.8218 | | 22.7157 | 178500 | 0.8284 | | 22.7793 | 179000 | 0.833 | | 22.8430 | 179500 | 0.8176 | | 22.9066 | 180000 | 0.8431 | | 22.9702 | 180500 | 0.8234 | | 23.0339 | 181000 | 0.7998 | | 23.0975 | 181500 | 0.7821 | | 23.1611 | 182000 | 0.7914 | | 23.2247 | 182500 | 0.7851 | | 23.2884 | 183000 | 0.7797 | | 23.3520 | 183500 | 0.7931 | | 23.4156 | 184000 | 0.7912 | | 23.4793 | 184500 | 0.7876 | | 23.5429 | 185000 | 0.7954 | | 23.6065 | 185500 | 0.7946 | | 23.6701 | 186000 | 0.7782 | | 23.7338 | 186500 | 0.7952 | | 23.7974 | 187000 | 0.8015 | | 23.8610 | 187500 | 0.7977 | | 23.9247 | 188000 | 0.7875 | | 23.9883 | 188500 | 0.7935 | | 24.0519 | 189000 | 0.7617 | | 24.1156 | 189500 | 0.7625 | | 24.1792 | 190000 | 0.7514 | | 24.2428 | 190500 | 0.7662 | | 24.3064 | 191000 | 0.7692 | | 24.3701 | 191500 | 0.7733 | | 24.4337 | 192000 | 0.7561 | | 24.4973 | 192500 | 0.7577 | | 24.5610 | 193000 | 0.7687 | | 24.6246 | 193500 | 0.7647 | | 24.6882 | 194000 | 0.7717 | | 24.7518 | 194500 | 0.761 | | 24.8155 | 195000 | 0.7661 | | 24.8791 | 195500 | 0.7446 | | 24.9427 | 196000 | 0.7659 | | 25.0064 | 196500 | 0.7559 | | 25.0700 | 197000 | 0.7183 | | 25.1336 | 197500 | 0.7399 | | 25.1973 | 198000 | 0.7308 | | 25.2609 | 198500 | 0.733 | | 25.3245 | 199000 | 0.746 | | 25.3881 | 199500 | 0.7274 | | 25.4518 | 200000 | 0.7358 | | 25.5154 | 200500 | 0.7468 | | 25.5790 | 201000 | 0.734 | | 25.6427 | 201500 | 0.7493 | | 25.7063 | 202000 | 0.7263 | | 25.7699 | 202500 | 0.7355 | | 25.8335 | 203000 | 0.745 | | 25.8972 | 203500 | 0.7301 | | 25.9608 | 204000 | 0.7457 | | 26.0244 | 204500 | 0.7072 | | 26.0881 | 205000 | 0.7212 | | 26.1517 | 205500 | 0.7186 | | 26.2153 | 206000 | 0.7225 | | 26.2790 | 206500 | 0.7065 | | 26.3426 | 207000 | 0.7153 | | 26.4062 | 207500 | 0.72 | | 26.4698 | 208000 | 0.7074 | | 26.5335 | 208500 | 0.7117 | | 26.5971 | 209000 | 0.7206 | | 26.6607 | 209500 | 0.7132 | | 26.7244 | 210000 | 0.7199 | | 26.7880 | 210500 | 0.7102 | | 26.8516 | 211000 | 0.7155 | | 26.9152 | 211500 | 0.7057 | | 26.9789 | 212000 | 0.7191 | | 27.0425 | 212500 | 0.6942 | | 27.1061 | 213000 | 0.6924 | | 27.1698 | 213500 | 0.7025 | | 27.2334 | 214000 | 0.6911 | | 27.2970 | 214500 | 0.6955 | | 27.3607 | 215000 | 0.6875 | | 27.4243 | 215500 | 0.698 | | 27.4879 | 216000 | 0.7054 | | 27.5515 | 216500 | 0.6968 | | 27.6152 | 217000 | 0.7044 | | 27.6788 | 217500 | 0.6946 | | 27.7424 | 218000 | 0.6865 | | 27.8061 | 218500 | 0.6974 | | 27.8697 | 219000 | 0.698 | | 27.9333 | 219500 | 0.6943 | | 27.9969 | 220000 | 0.6985 | | 28.0606 | 220500 | 0.6785 | | 28.1242 | 221000 | 0.6842 | | 28.1878 | 221500 | 0.6832 | | 28.2515 | 222000 | 0.6863 | | 28.3151 | 222500 | 0.6806 | | 28.3787 | 223000 | 0.6897 | | 28.4424 | 223500 | 0.6975 | | 28.5060 | 224000 | 0.6802 | | 28.5696 | 224500 | 0.6836 | | 28.6332 | 225000 | 0.6849 | | 28.6969 | 225500 | 0.6781 | | 28.7605 | 226000 | 0.6761 | | 28.8241 | 226500 | 0.6762 | | 28.8878 | 227000 | 0.6781 | | 28.9514 | 227500 | 0.682 | | 29.0150 | 228000 | 0.6742 | | 29.0786 | 228500 | 0.6595 | | 29.1423 | 229000 | 0.683 | | 29.2059 | 229500 | 0.6721 | | 29.2695 | 230000 | 0.669 | | 29.3332 | 230500 | 0.683 | | 29.3968 | 231000 | 0.6652 | | 29.4604 | 231500 | 0.671 | | 29.5241 | 232000 | 0.6662 | | 29.5877 | 232500 | 0.6665 | | 29.6513 | 233000 | 0.6718 | | 29.7149 | 233500 | 0.6657 | | 29.7786 | 234000 | 0.6677 | | 29.8422 | 234500 | 0.6732 | | 29.9058 | 235000 | 0.6687 | | 29.9695 | 235500 | 0.6732 |
### Framework Versions - Python: 3.11.5 - Sentence Transformers: 3.4.0 - Transformers: 4.48.0 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 2.21.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MarginMSELoss ```bibtex @misc{hofstätter2021improving, title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation}, author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury}, year={2021}, eprint={2010.02666}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```