--- license: other base_model: meta-llama/Meta-Llama-3-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: C018_random_sample_llama3-8b-base_pretrain_20240504_182259 results: [] --- # C018_random_sample_llama3-8b-base_pretrain_20240504_182259 This model is a fine-tuned version of [/data/pro-align/progressalign/shared_storage/downloaded_models/llama3-8b-base](https://huggingface.co//data/pro-align/progressalign/shared_storage/downloaded_models/llama3-8b-base) on the C018_random_sample_data dataset. It achieves the following results on the evaluation set: - Loss: 2.2706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 20 - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3701 | 0.2186 | 200 | 2.3702 | | 2.3183 | 0.4372 | 400 | 2.3160 | | 2.2634 | 0.6557 | 600 | 2.2863 | | 2.2522 | 0.8743 | 800 | 2.2706 | | 2.0306 | 1.0929 | 1000 | 2.2777 | | 2.0095 | 1.3115 | 1200 | 2.2760 | | 2.0539 | 1.5301 | 1400 | 2.2746 | | 2.0338 | 1.7486 | 1600 | 2.2743 | | 2.0648 | 1.9672 | 1800 | 2.2737 | | 2.0297 | 2.1858 | 2000 | 2.2766 | | 2.0487 | 2.4044 | 2200 | 2.2767 | | 2.0329 | 2.6230 | 2400 | 2.2770 | | 2.0213 | 2.8415 | 2600 | 2.2766 | | 2.0559 | 3.0601 | 2800 | 2.2771 | | 2.0543 | 3.2787 | 3000 | 2.2773 | | 2.0317 | 3.4973 | 3200 | 2.2772 | | 1.988 | 3.7158 | 3400 | 2.2770 | | 2.0355 | 3.9344 | 3600 | 2.2772 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.19.1