{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f520a10e390>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661771891.79755, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "_last_obs": { ":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAF2rlT4gcJk/w5IdPx7BJ79AdKe+Aki7vQAAAAAAAAAA+osRvlHphD9wW26+nK8Zv94L7L39BjG+AAAAAAAAAAAAvFK8Aia8P7hqwL1cwti9PsQIPkd+Dj4AAAAAAAAAAGaJkz75spc/kqCwPmvAGr8cBts8VO+LvQAAAAAAAAAAAMDROrtYdz82Q8Q8rcJxv8/xyr14L5C9AAAAAAAAAADNO+K8oalsP/Vs1r2aeUu/5UP7PUrdgTwAAAAAAAAAADN/Q770u1Y/EMYFv/VRXL+qGbc+FszfPQAAAAAAAAAAptSHvWrqPT8ShLo61Q9kvx3jTL5yC8K9AAAAAAAAAACqqWG+HJ6nPz8URb/rAt6+EvC7Pa7jyz0AAAAAAAAAABpNx70EA2M/EGOFvqmBWb91zNi9JSUkvgAAAAAAAAAAs+BSvZrEuj/uXim/CYAxPqMzoD3gVmk+AAAAAAAAAAAGisk+4u4SP7aNPT9BaHq/vRyGvks2iL4AAAAAAAAAAPPxiz3IIbE/FZKoPlItgb68RVC8PKKSPQAAAAAAAAAAULzSPhDHgb2wADg/vpWzv66Oz709UlK9AACAPwAAAADzW0w+IVBbP198ET8BfIS/debMvF7mez0AAAAAAAAAAEbFgj6U4a0/9kBkPzMyy73EI1O+1vvRuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg==" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz6RN1T0XVcCUhpRSlIwBbJRLXIwBdJRHQG2haY3Ns311fZQoaAZoCWgPQwh8RiI0gnNZwJSGlFKUaBVLZ2gWR0Btojzd1uBMdX2UKGgGaAloD0MINXnKarqlXsCUhpRSlGgVS2hoFkdAbaQi+tbLU3V9lChoBmgJaA9DCFZhM8AFTlDAlIaUUpRoFUuAaBZHQG2krk8zQ/p1fZQoaAZoCWgPQwh/h6JAn6RTwJSGlFKUaBVLQGgWR0BtpZHTZxrBdX2UKGgGaAloD0MIe7slOWB4WMCUhpRSlGgVS0ZoFkdAbaaJswco6XV9lChoBmgJaA9DCC/E6o8w+1HAlIaUUpRoFUtXaBZHQG2pHp8neBR1fZQoaAZoCWgPQwiMZ9DQP0VPwJSGlFKUaBVLVGgWR0BtqWknCwbEdX2UKGgGaAloD0MIlfHvM67VYMCUhpRSlGgVS2ZoFkdAbap6fra/RHV9lChoBmgJaA9DCCUC1T+IokPAlIaUUpRoFUtBaBZHQG2qxVQyhzx1fZQoaAZoCWgPQwj0T3CxovJswJSGlFKUaBVLamgWR0BtrEq4H5aedX2UKGgGaAloD0MIf2snSkKPVcCUhpRSlGgVS2NoFkdAba2v0RODa3V9lChoBmgJaA9DCMAhVKnZxG/AlIaUUpRoFUtvaBZHQG2t/Xf642F1fZQoaAZoCWgPQwhq3nGKDhhnwJSGlFKUaBVLdGgWR0BtsCMFUyYYdX2UKGgGaAloD0MIF/GdmPXPV8CUhpRSlGgVS3JoFkdAbbKdlNDc/XV9lChoBmgJaA9DCEPFOH8Tm1vAlIaUUpRoFUtUaBZHQG2zLThHbyp1fZQoaAZoCWgPQwixaaUQyGJYQJSGlFKUaBVN6ANoFkdAbbOAxSHdoHV9lChoBmgJaA9DCMqIC0CjFVrAlIaUUpRoFUtEaBZHQG2012aDwph1fZQoaAZoCWgPQwjCoiJOJ9VkwJSGlFKUaBVLc2gWR0BttSvovBacdX2UKGgGaAloD0MIxJlfzQFFU8CUhpRSlGgVSz5oFkdAbbUzSCvovHV9lChoBmgJaA9DCCI5mbhVsVzAlIaUUpRoFUtkaBZHQG22KvFFUhp1fZQoaAZoCWgPQwgRqz/CMGZYwJSGlFKUaBVLfWgWR0BttuWyC4BndX2UKGgGaAloD0MIbk26LZF2UsCUhpRSlGgVS0VoFkdAbbfOv+wTunV9lChoBmgJaA9DCMkiTbyDpWnAlIaUUpRoFUt6aBZHQG24NaY/mkp1fZQoaAZoCWgPQwhzZVBt8HxlwJSGlFKUaBVLOmgWR0BtuCL61stTdX2UKGgGaAloD0MIMWDJVSzCbcCUhpRSlGgVS2FoFkdAbbhjSXt0FXV9lChoBmgJaA9DCChHAaJgNmTAlIaUUpRoFUt0aBZHQG240aIeo1l1fZQoaAZoCWgPQwgDP6ph/310wJSGlFKUaBVLXWgWR0BtuJrnDBM0dX2UKGgGaAloD0MIb9i2KLN9PECUhpRSlGgVS15oFkdAbbmt3fQ8fXV9lChoBmgJaA9DCE5+i06WWV7AlIaUUpRoFUtKaBZHQG27tLteD4B1fZQoaAZoCWgPQwguBDkoYRdmwJSGlFKUaBVLbWgWR0BtvGAAhje9dX2UKGgGaAloD0MIJh3lYDZCVMCUhpRSlGgVS0VoFkdAbb0PQOWjXXV9lChoBmgJaA9DCBYTm49r91zAlIaUUpRoFUtHaBZHQG2+OqNp/PR1fZQoaAZoCWgPQwico46Oq1xSwJSGlFKUaBVLS2gWR0Btv6B06o2odX2UKGgGaAloD0MITtAmh0+FaMCUhpRSlGgVS2doFkdAbcFJOnEVFnV9lChoBmgJaA9DCF8IOe//S17AlIaUUpRoFUtwaBZHQG3CHgpBomJ1fZQoaAZoCWgPQwghc2VQ7UJqwJSGlFKUaBVLUWgWR0Btwf5BTn7pdX2UKGgGaAloD0MIJH1aRX/+XMCUhpRSlGgVS1FoFkdAbcJzg/C66XV9lChoBmgJaA9DCBLb3QN0l13AlIaUUpRoFUuCaBZHQG3C8+7lJYl1fZQoaAZoCWgPQwi1iCgmb2djwJSGlFKUaBVLiWgWR0BtwzaRISUUdX2UKGgGaAloD0MI5fBJJ9LtccCUhpRSlGgVS2FoFkdAbcOvxpcopnV9lChoBmgJaA9DCK7UsyAUz2rAlIaUUpRoFUtkaBZHQG3Ea+vhZQp1fZQoaAZoCWgPQwiOyk3UUopiwJSGlFKUaBVLbWgWR0BtxL4gzP8idX2UKGgGaAloD0MISnuDL0zCRsCUhpRSlGgVS25oFkdAbcU+HrQgLnV9lChoBmgJaA9DCJ55Oew+vnXAlIaUUpRoFUtTaBZHQG3GV2zOX3R1fZQoaAZoCWgPQwhJgQUwZW1vwJSGlFKUaBVLX2gWR0BtxyxNZeRgdX2UKGgGaAloD0MIPEz75n64a8CUhpRSlGgVS4RoFkdAbclOYYzi0nV9lChoBmgJaA9DCLNdoQ+WvFPAlIaUUpRoFUtCaBZHQG3JreqJdjZ1fZQoaAZoCWgPQwh73SIw1kNawJSGlFKUaBVLcmgWR0BtysR6F/QTdX2UKGgGaAloD0MIl3X/WIjcWsCUhpRSlGgVS1BoFkdAbcyTA31jAnV9lChoBmgJaA9DCMIVUKinx2LAlIaUUpRoFUt1aBZHQG3Mq9f1Hvt1fZQoaAZoCWgPQwiDL0ymCt5NwJSGlFKUaBVLbmgWR0BtzRsTFl06dX2UKGgGaAloD0MIArfu5qmUVcCUhpRSlGgVS1hoFkdAbc3mOEM9bHV9lChoBmgJaA9DCGUaTS7GhFXAlIaUUpRoFUtNaBZHQG3N7EP1+RZ1fZQoaAZoCWgPQwh/SwD+KXpgwJSGlFKUaBVLbGgWR0Btzo/1QIlddX2UKGgGaAloD0MI0CozpXWUZ8CUhpRSlGgVS2hoFkdAbc7eZ5Rj0HV9lChoBmgJaA9DCJs6j4r/gyRAlIaUUpRoFUtcaBZHQG3O80UGmk51fZQoaAZoCWgPQwgeFf93RCtfwJSGlFKUaBVLWWgWR0Bt0DiIcinpdX2UKGgGaAloD0MIBOeMKO29WsCUhpRSlGgVS4BoFkdAbdHw+dK/VXV9lChoBmgJaA9DCFLUmXtIBVvAlIaUUpRoFUuCaBZHQG3Ukal1r7B1fZQoaAZoCWgPQwiu1onL8VJKwJSGlFKUaBVLQGgWR0Bt1N3pwCKadX2UKGgGaAloD0MIQKIJFLFcVsCUhpRSlGgVS0RoFkdAbdUBHTZxrHV9lChoBmgJaA9DCIdQpWaPEmHAlIaUUpRoFUt1aBZHQG3Vq3mV7hN1fZQoaAZoCWgPQwhVwhN6/YdfwJSGlFKUaBVLfmgWR0Bt1fmA9V3mdX2UKGgGaAloD0MIc/c5PlpDXcCUhpRSlGgVS0JoFkdAbdXy7wrlNnV9lChoBmgJaA9DCPZ+ox03nVfAlIaUUpRoFUtSaBZHQG3WqkuYhMd1fZQoaAZoCWgPQwjUY1sGnAFawJSGlFKUaBVLSGgWR0Bt1qv5gw49dX2UKGgGaAloD0MIxTvAkxaMWcCUhpRSlGgVS0hoFkdAbdeBQN0/4nV9lChoBmgJaA9DCHfc8LvpzkrAlIaUUpRoFUt+aBZHQG3ZP24/eLx1fZQoaAZoCWgPQwi9pgcFpT5YwJSGlFKUaBVLUWgWR0Bt2fUH6dlNdX2UKGgGaAloD0MI2lazzvjeEkCUhpRSlGgVS4doFkdAbdoIj4YaYXV9lChoBmgJaA9DCOaxZmQQEGTAlIaUUpRoFUtlaBZHQG3auoxYaHd1fZQoaAZoCWgPQwimKJfGLwBMwJSGlFKUaBVLgGgWR0Bt2qNlyzX0dX2UKGgGaAloD0MIVBoxs8/ZVsCUhpRSlGgVS2RoFkdAbdr0NBnjAHV9lChoBmgJaA9DCOgTeZJ0FlXAlIaUUpRoFUtDaBZHQG3c63iJfpl1fZQoaAZoCWgPQwjH2AkvQQlnwJSGlFKUaBVLPmgWR0Bt3To2XLNfdX2UKGgGaAloD0MIUIvBwzSFYMCUhpRSlGgVS01oFkdAbd4PAfuCw3V9lChoBmgJaA9DCO1GH/MBZFDAlIaUUpRoFUtAaBZHQG3ePFNtZV51fZQoaAZoCWgPQwgvMgG/RvxlwJSGlFKUaBVLdGgWR0Bt3+0kWykcdX2UKGgGaAloD0MIGHyak5cPbMCUhpRSlGgVS19oFkdAbeAHKOktVnV9lChoBmgJaA9DCCno9pLGFlXAlIaUUpRoFUs0aBZHQG3gNzjm0Vt1fZQoaAZoCWgPQwiNs+kI4K5YwJSGlFKUaBVLWmgWR0Bt4LQkX1rZdX2UKGgGaAloD0MIeQYN/ZMYYcCUhpRSlGgVS2NoFkdAbeF+fAbhnHV9lChoBmgJaA9DCDpdFhObam/AlIaUUpRoFUtdaBZHQG3hxIatLct1fZQoaAZoCWgPQwgc7E0MyRVUwJSGlFKUaBVLV2gWR0Bt45D5TIeYdX2UKGgGaAloD0MIHEXWGkqAWsCUhpRSlGgVSzpoFkdAbeTzYEnss3V9lChoBmgJaA9DCO5gxD4BaVDAlIaUUpRoFUs6aBZHQG3lJD/lyR11fZQoaAZoCWgPQwh97C5QUjdXwJSGlFKUaBVLXmgWR0Bt5iSzPa+OdX2UKGgGaAloD0MImzdOCvPbXsCUhpRSlGgVS2poFkdAbee5sj3VTnV9lChoBmgJaA9DCBk74SU4FnDAlIaUUpRoFUtvaBZHQG3oPnKW9lF1fZQoaAZoCWgPQwinzw64rhpUwJSGlFKUaBVLeGgWR0Bt6LfvWpZPdX2UKGgGaAloD0MIsFdYcL82Z8CUhpRSlGgVS41oFkdAbejJmukk8nV9lChoBmgJaA9DCPTF3osvRmzAlIaUUpRoFUtjaBZHQG3pn2h7E511fZQoaAZoCWgPQwgQWg9fJjY4wJSGlFKUaBVLT2gWR0Bt6fEdeY2LdX2UKGgGaAloD0MIg09z8iJ2V8CUhpRSlGgVS0hoFkdAbenR5TqB3HV9lChoBmgJaA9DCPqcu10vwFHAlIaUUpRoFUtDaBZHQG3qAqd6LO11fZQoaAZoCWgPQwjjwRa7ffBRwJSGlFKUaBVLU2gWR0Bt6l98Z1mrdX2UKGgGaAloD0MIUYU/w5uqccCUhpRSlGgVS2xoFkdAbepzXBguy3V9lChoBmgJaA9DCNMXQs776FfAlIaUUpRoFUs7aBZHQG3rJ8v24/h1fZQoaAZoCWgPQwiGcqJdhSpRwJSGlFKUaBVLZmgWR0Bt7RDXvphXdWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": { ":type:": "", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }