--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-cross-ner-v2 results: [] --- # bert-finetuned-cross-ner-v2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1808 - Precision: 0.8289 - Recall: 0.8613 - F1: 0.8448 - Accuracy: 0.9550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2086 | 1.0 | 2607 | 0.1994 | 0.7700 | 0.8138 | 0.7913 | 0.9447 | | 0.126 | 2.0 | 5214 | 0.1740 | 0.8148 | 0.8495 | 0.8318 | 0.9533 | | 0.0819 | 3.0 | 7821 | 0.1808 | 0.8289 | 0.8613 | 0.8448 | 0.9550 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3