--- library_name: transformers license: cc-by-sa-4.0 base_model: nlpaueb/legal-bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: legalbertcase_outcome_model results: [] --- # legalbertcase_outcome_model This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5650 - Accuracy: 0.4393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6614 | 1.0 | 224 | 1.6261 | 0.4373 | | 1.5774 | 2.0 | 448 | 1.5875 | 0.4449 | | 1.5879 | 3.0 | 672 | 1.5650 | 0.4393 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1