### Introduction: This model belongs to text-classification. You can determine the emotion behind a sentence. ### Label Explaination: LABEL_1: Positive (have positive emotion) LABEL_0: Negative (have negative emotion) ### Usage: ```python >>> from transformers import pipeline >>> ec = pipeline('sentiment-analysis', model='Osiris/emotion_classifer') >>> ec("Hello, I'm a good model.") ``` ### Accuracy: We reach 81.81% for validation dataset, and % for test dataset.