# CognoSphere Unified Multimodal Language Model (CSUMLM) import tensorflow as tf import numpy as np import os import random # Data Processing class DataProcessor: def __init__(self, data_dir): self.data_dir = data_dir self.text_data = [] self.image_data = [] self.audio_data = [] self.load_data() def load_data(self): # Load text data text_files = os.listdir(os.path.join(self.data_dir, 'text')) for file in text_files: with open(os.path.join(self.data_dir, 'text', file), 'r') as f: self.text_data.extend(f.readlines()) # Load image data image_files = os.listdir(os.path.join(self.data_dir, 'images')) for file in image_files: self.image_data.append(os.path.join(self.data_dir, 'images', file)) # Load audio data audio_files = os.listdir(os.path.join(self.data_dir, 'audio')) for file in audio_files: self.audio_data.append(os.path.join(self.data_dir, 'audio', file)) def get_batch(self, batch_size): # Randomly sample data from each modality text_batch = random.sample(self.text_data, batch_size) image_batch = random.sample(self.image_data, batch_size) audio_batch = random.sample(self.audio_data, batch_size) return text_batch, image_batch, audio_batch # Hybrid Learning Engine class HybridLearningEngine: def __init__(self, data_processor): self.data_processor = data_processor self.model = self.build_model() def build_model(self): # Define the model architecture # Combine transfer learning, deep learning, self-supervised learning, meta-learning, # deep meta-learning, reinforcement learning, and cross-domain analogy extraction # ... return model def train(self, epochs, batch_size): for epoch in range(epochs): text_batch, image_batch, audio_batch = self.data_processor.get_batch(batch_size) # Train the model on the batch # ... # Advanced Attention Mechanism class AttentionMechanism: def __init__(self): self.traditional_attention = TraditionalAttention() self.self_attention = SelfAttention() self.linear_attention = LinearAttention() def apply_attention(self, inputs): # Combine traditional attention, self-attention, and linear attention # ... return attended_inputs # Hierarchical Belief Desire Intent Tree/Chain of Thought Structure class BeliefDesireIntentTree: def __init__(self): self.root = None def build_tree(self, inputs): # Construct the Belief Desire Intent Tree/Chain of Thought Structure # ... return self.root # Modular Python Architecture class CSUMLM: def __init__(self, data_dir): self.data_processor = DataProcessor(data_dir) self.learning_engine = HybridLearningEngine(self.data_processor) self.attention_mechanism = AttentionMechanism() self.belief_desire_intent_tree = BeliefDesireIntentTree() def train(self, epochs, batch_size): self.learning_engine.train(epochs, batch_size) def process_input(self, inputs): # Preprocess inputs # ... # Apply attention mechanism attended_inputs = self.attention_mechanism.apply_attention(inputs) # Build Belief Desire Intent Tree/Chain of Thought Structure belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs) # Generate output based on the tree # ... return output # Real-time Learning Mechanisms class RealtimeLearningMechanism: def __init__(self, model): self.model = model def update_model(self, new_data): # Update the model with new data # ... # Dynamic Knowledge Base class DynamicKnowledgeBase: def __init__(self): self.knowledge_base = {} def update_knowledge_base(self, new_knowledge): # Update the knowledge base with new linguistic and multimodal patterns # ... # Explainability and Transparency class Explainer: def __init__(self, model): self.model = model def explain_prediction(self, inputs): # Generate explanations for model predictions and responses # ... return explanation # Internal Retrieval Augmented Generation Enhanced Logic (I-RAGEL) class IRAGEL: def __init__(self, model, knowledge_base): self.model = model self.knowledge_base = knowledge_base def retrieve_or_generate(self, inputs): # Retrieve or generate additional linguistic and multimodal data # ... return augmented_inputs def reflect_and_improve(self, inputs, outputs): # Reflect on generated logic and improve decision-making processes # ... return improved_outputs def self_train(self, inputs, outputs): # Implement self-training for continuous performance enhancement # ... # Main CSUMLM Class class CSUMLM: def __init__(self, data_dir): self.data_processor = DataProcessor(data_dir) self.learning_engine = HybridLearningEngine(self.data_processor) self.attention_mechanism = AttentionMechanism() self.belief_desire_intent_tree = BeliefDesireIntentTree() self.realtime_learning_mechanism = RealtimeLearningMechanism(self.learning_engine.model) self.knowledge_base = DynamicKnowledgeBase() self.explainer = Explainer(self.learning_engine.model) self.iragel = IRAGEL(self.learning_engine.model, self.knowledge_base) def train(self, epochs, batch_size): self.learning_engine.train(epochs, batch_size) def process_input(self, inputs): # Preprocess inputs # ... # Apply attention mechanism attended_inputs = self.attention_mechanism.apply_attention(inputs) # Build Belief Desire Intent Tree/Chain of Thought Structure belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs) # Retrieve or generate additional data augmented_inputs = self.iragel.retrieve_or_generate(attended_inputs) # Generate output based on the tree and augmented inputs outputs = self.learning_engine.model(augmented_inputs, belief_desire_intent_tree) # Reflect and improve outputs improved_outputs = self.iragel.reflect_and_improve(augmented_inputs, outputs) # Explain predictions explanation = self.explainer.explain_prediction(improved_outputs) # Update knowledge base and model self.knowledge_base.update_knowledge_base(new_knowledge) self.realtime_learning_mechanism.update_model(new_data) # Self-train the model self.iragel.self_train(augmented_inputs, improved_outputs) return improved_outputs, explanation