---
pipeline_tag: text-generation
inference: true
widget:
- text: "What's lemur's favorite fruit?"
example_title: Lemur favorite fruit
group: Python
- text: 'Write a Python function to merge two sorted lists into one sorted list without using any built-in sort functions.'
example_title: Merge Sort
group: Python
license: cc-by-nc-4.0
library_name: transformers
tags:
- text-generation
- code
- text-generation-inference
language:
- en
---
# lemur-70b-chat-v1
📄Paper: https://arxiv.org/abs/2310.06830
👩💻Code: https://github.com/OpenLemur/Lemur
## Use
### Setup
First, we have to install all the libraries listed in `requirements.txt` in [GitHub](https://github.com/OpenLemur/lemur-v1):
```bash
pip install -r requirements.txt
```
### Generation
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("OpenLemur/lemur-70b-chat-v1")
model = AutoModelForCausalLM.from_pretrained("OpenLemur/lemur-70b-chat-v1", device_map="auto", load_in_8bit=True)
# Text Generation Example
prompt = """<|im_start|>system
You are a helpful, respectful, and honest assistant.
<|im_end|>
<|im_start|>user
What's a lemur's favorite fruit?<|im_end|>
<|im_start|>assistant
"""
input = tokenizer(prompt, return_tensors="pt")
output = model.generate(**input, max_length=50, num_return_sequences=1)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
# Code Generation Example
prompt = """<|im_start|>system
Below is an instruction that describes a task. Write a response that appropriately completes the request.
<|im_end|>
<|im_start|>user
Write a Python function to merge two sorted lists into one sorted list without using any built-in sort functions.<|im_end|>
<|im_start|>assistant
"""
input = tokenizer(prompt, return_tensors="pt")
output = model.generate(**input, max_length=200, num_return_sequences=1)
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_code)
```
# License
The model is licensed under a CC BY-NC-4.0 license focused on research use cases.
# Acknowledgements
The Lemur project is an open collaborative research effort between [XLang Lab](https://www.xlang.ai/) and Salesforce Research. We thank Salesforce, Google Research and Amazon AWS for their gift support.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenLemur__lemur-70b-chat-v1)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 57.1 |
| ARC (25-shot) | 66.98 |
| HellaSwag (10-shot) | 85.73 |
| MMLU (5-shot) | 65.99 |
| TruthfulQA (0-shot) | 56.58 |
| Winogrande (5-shot) | 81.69 |
| GSM8K (5-shot) | 35.33 |
| DROP (3-shot) | 7.4 |