--- license: cc-by-nc-4.0 language: - ro base_model: - OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09 datasets: - OpenLLM-Ro/ro_dpo_helpsteer model-index: - name: OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 5.87 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 4.40 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 49.96 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 46.29 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 53.29 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 65.57 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 58.15 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 34.77 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 41.70 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 97.48 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 54.00 - task: type: text-generation dataset: name: LaRoSeDa_binary_finetuned type: LaRoSeDa_binary_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 0.00 - task: type: text-generation dataset: name: LaRoSeDa_multiclass_finetuned type: LaRoSeDa_multiclass_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 0.00 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 22.09 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 23.00 - task: type: text-generation dataset: name: WMT_EN-RO_finetuned type: WMT_EN-RO_finetuned metrics: - name: Average bleu type: bleu value: 0.00 - task: type: text-generation dataset: name: WMT_RO-EN_finetuned type: WMT_RO-EN_finetuned metrics: - name: Average bleu type: bleu value: 0.00 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 26.05 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 42.77 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average exact_match type: exact_match value: 0.00 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average f1 type: f1 value: 0.00 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 79.64 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 79.52 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average spearman type: spearman value: 0.00 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average pearson type: pearson value: 0.00 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 6.22 - name: Second turn type: Score value: 5.49 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 44.56 - name: 1-shot type: accuracy value: 45.42 - name: 3-shot type: accuracy value: 46.10 - name: 5-shot type: accuracy value: 46.27 - name: 10-shot type: accuracy value: 46.96 - name: 25-shot type: accuracy value: 48.41 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 52.33 - name: 1-shot type: accuracy value: 52.86 - name: 3-shot type: accuracy value: 54.06 - name: 5-shot type: accuracy value: 53.90 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 64.33 - name: 1-shot type: accuracy value: 64.72 - name: 3-shot type: accuracy value: 66.30 - name: 5-shot type: accuracy value: 66.93 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 57.45 - name: 1-shot type: accuracy value: 57.65 - name: 3-shot type: accuracy value: 58.18 - name: 5-shot type: accuracy value: 58.64 - name: 10-shot type: accuracy value: 58.85 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 32.52 - name: 3-shot type: accuracy value: 33.97 - name: 5-shot type: accuracy value: 37.83 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 97.67 - name: 1-shot type: macro-f1 value: 97.07 - name: 3-shot type: macro-f1 value: 97.40 - name: 5-shot type: macro-f1 value: 97.80 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 58.49 - name: 1-shot type: macro-f1 value: 55.93 - name: 3-shot type: macro-f1 value: 47.70 - name: 5-shot type: macro-f1 value: 53.89 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 8.63 - name: 1-shot type: bleu value: 25.89 - name: 3-shot type: bleu value: 26.79 - name: 5-shot type: bleu value: 27.05 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 3.56 - name: 1-shot type: bleu value: 20.66 - name: 3-shot type: bleu value: 33.56 - name: 5-shot type: bleu value: 34.22 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 11.26 - name: 1-shot type: exact_match value: 34.29 - name: 3-shot type: exact_match value: 29.24 - name: 5-shot type: exact_match value: 29.41 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 22.98 - name: 1-shot type: f1 value: 54.48 - name: 3-shot type: f1 value: 46.18 - name: 5-shot type: f1 value: 47.43 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 79.99 - name: 3-shot type: spearman value: 78.42 - name: 5-shot type: spearman value: 80.51 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 80.59 - name: 3-shot type: pearson value: 78.11 - name: 5-shot type: pearson value: 79.87 --- # Model Card for Model ID *Built with Meta Llama 3* This model points/is identical to [RoLlama3-8b-Instruct-DPO-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09). RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [RoLlama3-8b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."}, {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
Model | |||||||
Llama-3-8B-Instruct | |||||||
RoLlama3-8b-Instruct-2024-06-28 | |||||||
RoLlama3-8b-Instruct-2024-10-09 | |||||||
RoLlama3-8b-Instruct-DPO-2024-10-09 |
Model | (Macro F1) |
(Macro F1) |
(Macro F1) |
(Macro F1) |
(Bleu) |
(Bleu) |
(Bleu) |
(Bleu) |
Llama-3-8B-Instruct | ||||||||
RoLlama3-8b-Instruct-2024-06-28 | ||||||||
RoLlama3-8b-Instruct-2024-10-09 | ||||||||
RoLlama3-8b-Instruct-DPO-2024-10-09 |
Model | ||||||||
Llama-3-8B-Instruct | ||||||||
RoLlama3-8b-Instruct-2024-06-28 | ||||||||
RoLlama3-8b-Instruct-2024-10-09 | ||||||||
RoLlama3-8b-Instruct-DPO-2024-10-09 |
Model | ||||
Llama-3-8B-Instruct | ||||
RoLlama3-8b-Instruct-2024-06-28 | ||||
RoLlama3-8b-Instruct-2024-10-09 | ||||
RoLlama3-8b-Instruct-DPO-2024-10-09 |
Model | ||
Llama-3-8B-Instruct | ||
RoLlama3-8b-Instruct-2024-06-28 | ||
RoLlama3-8b-Instruct-2024-10-09 | ||
RoLlama3-8b-Instruct-DPO-2024-10-09 |