import io import logging import torch import torch.utils.checkpoint from torch import nn from torch.nn import MSELoss from transformers.modeling_outputs import ( CausalLMOutputWithPast, ) from typing import List, Optional, Tuple, Union from transformers import LlamaForCausalLM from torch.cuda.amp import autocast as autocast from .modeling_vit import build_vit from .modeling_qformer import build_qformer from .model_config import VideoChatEConfig logger = logging.getLogger(__name__) from transformers import LlamaTokenizer,AutoTokenizer,AutoModel,AutoModelForCausalLM,AutoProcessor from transformers import AutoConfig, PreTrainedModel import os import sys try: from third_party.sam2.build_sam import build_sam2_video_predictor from third_party.cgdetr.cg_detr.model import build_cgdetr_model except: print("can not import sam2 and cg-detr, install them first.") DEFAULT_IMG_TOKEN = "[IMG]" DEFAULT_IMG_END_TOKEN = "[/IMG]" DEFAULT_IMAGE_TOKEN = "" DEFAULT_VIDEO_TOKEN = "[VIDEO]" IMG_TOKEN = "[]" VID_TOKEN = "[]" BOX_START = '' # BOX_END = '' ATBOXES_PLACEHOLDER = '' # ATBOXES_PLACEHOLDER = '' BOXES_PLACEHOLDER = '' EXPR_PLACEHOLDER = '' QUESTION_PLACEHOLDER = '' TIME_START = '' # TIME_END = '' TIME_PLACEHOLDER = '' ATTEMP_PLACEHOLDER = TIME_START + TIME_PLACEHOLDER # ATTEMP_PLACEHOLDER = TIME_START TRACK_START='' TRACK_PLACEHOLDER = '' TRACK_START_BOX = '' ATTRACK_PLACEHOLDER = TRACK_START + TRACK_PLACEHOLDER need_template_list = ['REC', 'flickr', 'tracking', 'tracking2', 'tracking3', 'tracking4'] load_image_list = ['image', 'REC', 'flickr'] load_video_list = ['video', 'TVG', 'tracking', 'tracking2','tracking3', 'tracking4', 'TVG+HL'] special_tokens = [BOX_START, TIME_START, TIME_PLACEHOLDER, BOXES_PLACEHOLDER, TRACK_START, TRACK_PLACEHOLDER, TRACK_START_BOX] def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def freeze_module(module): for _, param in module.named_parameters(): param.requires_grad = False module = module.eval() module.train = disabled_train return module class LLMConfig(AutoConfig): model_type = "20b" class BaseMLLM(PreTrainedModel): config_class = VideoChatEConfig def __init__(self, config,_tokenizer=None): # super().__init__(config) self.model_config = config.model_config self.tokenizer = _tokenizer config.cg_opt = None config.model_config = None config.model_tokenizer = None super().__init__(config) self.build_vision_encoder() self.build_llm() self.build_bridge() self.build_loss() self.load_pretrained_weights() try: if config.build_decoder: self.cg_opt = config.cg_opt self.build_bbox_decoder() self.build_sam() self.build_CGDETR() except: print("please install cgdetr and sam2 first") logger.info(f'Length of tokenizer and resize embedding: {len(self.tokenizer)}') def build_vision_encoder(self): if 'internvideo2' in self.model_config.vision_encoder.name.lower(): encoder_name = self.model_config.vision_encoder.name logger.info(f"Build vision_encoder: {encoder_name}") if encoder_name == 'internvideo2-1B': self.vision_encoder = pretrain_internvideo2_giant_patch14_224_clean(self.model_config) else: raise ValueError(f"Not implemented: {encoder_name}") elif 'vit' in self.model_config.vision_encoder.name.lower(): self.vision_encoder = build_vit(self.model_config) else: raise NotImplementedError(self.model_config.vision_encoder.name) if self.model_config.vision_encoder.vit_add_ln: self.vision_layernorm = nn.LayerNorm(self.model_config.vision_encoder.encoder_embed_dim, eps=1e-12) else: self.vision_layernorm = nn.Identity() self.freeze_vision_encoder = self.model_config.get("freeze_vision_encoder", False) if self.freeze_vision_encoder: logger.info("freeze vision encoder") freeze_module(self.vision_encoder) freeze_module(self.vision_layernorm) def build_CGDETR(self): self.cg_model, self.cg_criterion = build_cgdetr_model() def build_bridge(self): # ViT to LM: 1792 -> 6656 NOTE 768 is qformer dim self.project_up = nn.Linear(768, self.lm.config.hidden_size) # whether bias is needed? # LM to ViT: 6656 -> 1792 self.project_down = nn.Linear(self.lm.config.hidden_size, 768) if 'qformer' in self.model_config.bridge.name.lower(): from transformers import BertTokenizer self.qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="left") self.qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"}) self.qformer_tokenizer.padding_side = "left" if self.model_config.bridge.name == 'qformer': self.qformer, self.query_tokens = build_qformer( self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim, qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob, qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob, qformer_drop_path_rate=self.model_config.bridge.qformer_drop_path_rate, ) elif self.model_config.bridge.name == 'causal_qformer': self.qformer, self.query_tokens = build_causal_qformer( self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim, qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob, qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob ) self.qformer.resize_token_embeddings(len(self.qformer_tokenizer)) self.qformer.cls = None self.extra_num_query_token = self.model_config.bridge.extra_num_query_token if self.model_config.bridge.extra_num_query_token > 0: logger.info(f"Add extra {self.model_config.bridge.extra_num_query_token} tokens in QFormer") self.extra_query_tokens = nn.Parameter( torch.zeros(1, self.model_config.bridge.extra_num_query_token, self.query_tokens.shape[-1]) ) self.freeze_bridge = self.model_config.get("freeze_bridge", False) if self.freeze_bridge: logger.info("freeze bridge") freeze_module(self.qformer) self.query_tokens.requires_grad = False def build_llm(self): self.lm_name = self.model_config.llm.name if self.model_config.llm.name == "vicuna1.5_7b": self.lm = LlamaForCausalLM.from_pretrained(self.model_config.llm.pretrained_llm_path) self.lm.gradient_checkpointing = self.model_config.llm.get("use_llama_gradient_checkpointing", True) elif self.model_config.llm.name == 'mistral_7b': from transformers import AutoModelForCausalLM config = AutoConfig.from_pretrained( self.model_config.llm.pretrained_llm_path, torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", ) self.lm = AutoModelForCausalLM.from_config(config) elif self.model_config.llm.name == 'internlm_20b': from transformers import AutoModelForCausalLM self.lm = AutoModelForCausalLM.from_pretrained( self.model_config.llm.pretrained_llm_path, torch_dtype=torch.bfloat16, trust_remote_code=True, ) self.lm.gradient_checkpointing = True self.lm._set_gradient_checkpointing() else: raise NotImplementedError(self.model_config.llm.name) num_new_tokens = len(special_tokens) self.lm.resize_token_embeddings(len(self.tokenizer)) input_embeddings = self.lm.get_input_embeddings().weight.data output_embeddings = self.lm.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg self.model_config.token_at_ids = self.tokenizer.convert_tokens_to_ids([BOX_START])[0] self.freeze_llm = self.model_config.get("freeze_llm", True) logger.info(f'freeze_llm: {self.freeze_llm}') if self.freeze_llm: logger.info("freeze llm") freeze_module(self.lm) if self.model_config.llm.use_lora: self.use_lora = True from peft import get_peft_model, LoraConfig, TaskType logger.info("Use lora") if self.model_config.llm.name == 'internlm_20b': peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output'] ) else: peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head"] ) self.lm = get_peft_model(self.lm, peft_config) self.lm.enable_input_require_grads() self.lm.print_trainable_parameters() if self.model_config.get("freeze_lora", False): logger.info("freeze lora") freeze_module(self.lm) self.lm.print_trainable_parameters() else: self.use_lora = False def add_lora(self): if self.model_config.llm.use_lora: self.use_lora = True from peft import get_peft_model, LoraConfig, TaskType logger.info("Use lora") if self.model_config.llm.name == 'internlm_20b': peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output'] ) else: peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head"] ) self.lm = get_peft_model(self.lm, peft_config) self.lm.enable_input_require_grads() self.lm.print_trainable_parameters() if self.model_config.get("freeze_lora", False): logger.info("freeze lora") freeze_module(self.lm) self.lm.print_trainable_parameters() else: self.use_lora = False def add_tokens(self): num_new_tokens = len(special_tokens) self.lm.resize_token_embeddings(len(self.tokenizer)) input_embeddings = self.lm.get_input_embeddings().weight.data output_embeddings = self.lm.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) print(self.lm.get_input_embeddings().weight.data.shape) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg self.model_config.token_at_ids = self.tokenizer.convert_tokens_to_ids([BOX_START])[0] def build_loss(self): self.use_vision_regression_loss = self.model_config.loss.get("use_vision_regression_loss", False) self.use_bbox_loss = self.model_config.loss.get("add_bbox_loss", False) self.use_mask_loss = self.model_config.loss.get("use_mask_loss", False) self.use_temporal_loss = self.model_config.loss.get('use_temporal_loss', False) if self.use_vision_regression_loss: self.image_loss_fct = MSELoss() def load_pretrained_weights(self): if self.model_config.pretrained_paths.get('pretrained_vit_qformer_path', None): if 'safetensor' in self.model_config.pretrained_paths.pretrained_vit_qformer_path: from safetensors import safe_open from safetensors.torch import save_file state_dict = {} with safe_open(self.model_config.pretrained_paths.pretrained_vit_qformer_path, framework="pt", device="cpu") as f: for key in f.keys(): state_dict[key] = f.get_tensor(key) else: state_dict = torch.load(self.model_config.pretrained_paths.pretrained_vit_qformer_path, map_location="cpu") if "model" in state_dict.keys(): state_dict = state_dict["model"] elif "module" in state_dict.keys(): state_dict = state_dict["module"] # for deepspeed self.check_temp_emb(state_dict) msg = self.load_state_dict(state_dict, strict=False) print('Loading vit: ', msg) logger.info(f"Load ViT and QFormer from {self.model_config.pretrained_paths.pretrained_vit_qformer_path}: {msg}") if self.model_config.pretrained_paths.get('pretrained_videochat2', None): state_dict = torch.load(self.model_config.pretrained_paths.pretrained_videochat2, map_location="cpu") new_state_dict = {} for k in state_dict.keys(): if 'bert.embeddings' not in k: new_state_dict[k] = state_dict[k] state_dict = new_state_dict # self.check_temp_emb(state_dict) msg = self.load_state_dict(state_dict, strict=False) print('Loading videochat2: ', msg) def check_temp_emb(self, state_dict): old_num_frames = self.model_config.vision_encoder.get('origin_num_frames', None) new_num_frames = self.model_config.vision_encoder.num_frames if old_num_frames is not None and old_num_frames != new_num_frames: logger.info(f"interpolate_pos_embed_internvideo2 to {new_num_frames} (origin_num_frames={old_num_frames})!!!") a = len(state_dict) interpolate_pos_embed_internvideo2_new(state_dict, self.vision_encoder, orig_t_size=4) assert a == len(state_dict), state_dict.keys() def build_bbox_decoder(self): self.loc_encoder = nn.Sequential( nn.Linear(4, self.model_config.llm.hidden_size // 2, dtype=torch.bfloat16), nn.ReLU(), nn.Linear(self.model_config.llm.hidden_size // 2, self.model_config.llm.hidden_size, dtype=torch.bfloat16), ) self.loc_decoder = nn.Sequential( nn.Linear(self.model_config.llm.hidden_size, self.model_config.llm.hidden_size // 2, dtype=torch.bfloat16), nn.ReLU(), nn.Linear(self.model_config.llm.hidden_size // 2, 4, dtype=torch.bfloat16) ) self._initialize_bbox_weights() def _initialize_bbox_weights(self): return def build_sam(self): sam2_checkpoint = "/cpfs01/user/heyinan/checkpoints/sam2_hiera_large.pt" model_cfg = "sam2_hiera_l.yaml" predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=self.lm.device) self.sam = predictor freeze_module(self.sam) @property def dtype(self): return self.lm.dtype @property def device(self): return self.lm.device