Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -597,7 +597,7 @@ To deploy InternVL2 as an API, please configure the chat template config first.
|
|
597 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
598 |
|
599 |
```shell
|
600 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-40B --
|
601 |
```
|
602 |
|
603 |
To use the OpenAI-style interface, you need to install OpenAI:
|
@@ -614,7 +614,7 @@ from openai import OpenAI
|
|
614 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
615 |
model_name = client.models.list().data[0].id
|
616 |
response = client.chat.completions.create(
|
617 |
-
model=
|
618 |
messages=[{
|
619 |
'role':
|
620 |
'user',
|
@@ -644,7 +644,7 @@ TODO
|
|
644 |
|
645 |
## License
|
646 |
|
647 |
-
This project is released under the MIT license, while
|
648 |
|
649 |
## Citation
|
650 |
|
@@ -893,7 +893,7 @@ print(sess.response.text)
|
|
893 |
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
894 |
|
895 |
```shell
|
896 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-40B --
|
897 |
```
|
898 |
|
899 |
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
@@ -910,7 +910,7 @@ from openai import OpenAI
|
|
910 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
911 |
model_name = client.models.list().data[0].id
|
912 |
response = client.chat.completions.create(
|
913 |
-
model=
|
914 |
messages=[{
|
915 |
'role':
|
916 |
'user',
|
|
|
597 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
598 |
|
599 |
```shell
|
600 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-40B --backend turbomind --server-port 23333 --chat-template chat_template.json
|
601 |
```
|
602 |
|
603 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
|
614 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
615 |
model_name = client.models.list().data[0].id
|
616 |
response = client.chat.completions.create(
|
617 |
+
model=model_name,
|
618 |
messages=[{
|
619 |
'role':
|
620 |
'user',
|
|
|
644 |
|
645 |
## License
|
646 |
|
647 |
+
This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.
|
648 |
|
649 |
## Citation
|
650 |
|
|
|
893 |
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
894 |
|
895 |
```shell
|
896 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-40B --backend turbomind --server-port 23333 --chat-template chat_template.json
|
897 |
```
|
898 |
|
899 |
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
|
|
910 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
911 |
model_name = client.models.list().data[0].id
|
912 |
response = client.chat.completions.create(
|
913 |
+
model=model_name,
|
914 |
messages=[{
|
915 |
'role':
|
916 |
'user',
|