InternVL-14B-Flickr30K-FT-364px / configuration_internvl.py
czczup's picture
Upload folder using huggingface_hub
638aec8 verified
raw
history blame
4.8 kB
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import copy
from transformers import LlamaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from .configuration_intern_vit import InternVisionConfig
logger = logging.get_logger(__name__)
class InternVLConfig(PretrainedConfig):
r"""
[`InternVLConfig`] is the configuration class to store the configuration of a
[`InternVLModel`]. It is used to instantiate a InternVLModel according to the specified
arguments, defining the InternViT-6B and QLLaMA configs. Instantiating a configuration with
the defaults will yield a similar configuration to that of the InternVL architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`InternVisionConfig`].
qllama_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`LLaMAConfig`].
clip_embed_dim (`int`, *optional*, defaults to 768):
Size of the embeddings from the CLIP model.
attn_pool_num_heads (`int`, *optional*, defaults to 16):
Number of attention heads used in the attention pooling layers.
num_query_token (`int`, *optional*, defaults to 96):
Number of query tokens used in the transformer.
label_smoothing (`float`, *optional*, defaults to 0.0):
The amount of label smoothing to apply.
cross_attention_frequency (`int`, *optional*, defaults to 2):
The frequency of cross-attention layers in the model.
use_backbone_lora (`int`, *optional*, defaults to 0):
If non-zero, indicates the use of LoRA in the backbone of the model.
use_qllama_lora (`int`, *optional*, defaults to 0):
If non-zero, indicates the use of LoRA in the QLLaMA of the model.
force_image_size (`int` or `None`, *optional*):
If not None, forces the model to use this specific image size.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
kwargs (*optional*):
Dictionary of additional keyword arguments.
"""
model_type = 'internvl'
is_composition = True
def __init__(
self,
vision_config=None,
qllama_config=None,
clip_embed_dim=768,
attn_pool_num_heads=16,
num_query_token=96,
label_smoothing=0.0,
cross_attention_frequency=2,
use_backbone_lora=0,
use_qllama_lora=0,
force_image_size=None,
initializer_range=0.02,
**kwargs):
super().__init__(**kwargs)
if vision_config is None:
vision_config = {}
logger.info('vision_config is None. initializing the InternVisionConfig with default values.')
if qllama_config is None:
qllama_config = {}
logger.info(
'qllama_config is None. Initializing the InternTextConfig config with default values (`LlamaConfig`).')
self.vision_config = InternVisionConfig(**vision_config)
self.qllama_config = LlamaConfig(**qllama_config)
self.qllama_config.num_query_token = num_query_token
self.qllama_config.cross_attention_frequency = cross_attention_frequency
self.hidden_size = self.qllama_config.hidden_size
self.clip_embed_dim = clip_embed_dim
self.attn_pool_num_heads = attn_pool_num_heads
self.num_query_token = num_query_token
self.label_smoothing = label_smoothing
self.use_backbone_lora = use_backbone_lora
self.use_qllama_lora = use_qllama_lora
self.force_image_size = force_image_size
self.initializer_range = initializer_range
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output['vision_config'] = self.vision_config.to_dict()
output['qllama_config'] = self.qllama_config.to_dict()
output['model_type'] = self.__class__.model_type
return output