from typing import Tuple, Union import torch import torch.nn.functional as F # from .p2i_ops import p2i import math from torch import nn def resize_embedding(embedding_layer, new_size, num_tokens=1, mode='bicubic'): """Resize the position embedding in an nn.Embedding layer. Args: embedding_layer (nn.Embedding): The embedding layer to resize. new_size (int): The new size for the positional embedding. num_tokens (int): The number of special tokens (e.g., CLS token). mode (str): The interpolation mode. Returns: nn.Embedding: A new embedding layer with resized position embedding. """ # Extract weights from the original embedding layer original_weights = embedding_layer.weight.data # Resize the weights using the provided function resized_weights = _resize_pe(original_weights, new_size, mode, num_tokens) # Create a new embedding layer and initialize it with the resized weights new_embedding_layer = nn.Embedding(resized_weights.size(0), resized_weights.size(1)) new_embedding_layer.weight.data = resized_weights return new_embedding_layer def _resize_pe(pe: torch.Tensor, new_size: int, mode: str = 'bicubic', num_tokens: int = 1) -> torch.Tensor: """Resize positional embeddings. Args: pe (torch.Tensor): A tensor with shape (num_tokens + old_size ** 2, width). pe[0, :] is the CLS token. Returns: torch.Tensor: A tensor with shape (num_tokens + new_size **2, width). """ l, w = pe.shape old_size = int(math.sqrt(l-num_tokens)) assert old_size ** 2 + num_tokens == l return torch.cat([ pe[:num_tokens, :], F.interpolate(pe[num_tokens:, :].reshape(1, old_size, old_size, w).permute(0, 3, 1, 2), (new_size, new_size), mode=mode, align_corners=False).view(w, -1).t()], dim=0) def normalize_points(points: torch.Tensor, h: int, w: int) -> torch.Tensor: """ Normalize coordinates to [0, 1]. """ return (points + 0.5) / torch.tensor([[[w, h]]]).to(points) def denormalize_points(normalized_points: torch.Tensor, h: int, w: int) -> torch.Tensor: """ Reverse normalize_points. """ return normalized_points * torch.tensor([[[w, h]]]).to(normalized_points) - 0.5 # def points2heatmap(normalized_points, heatmap_size: Tuple[int, int], kernel_radius: float): # """ Normalized points [b x npoints x 2(XY)] -> heatmaps. # """ # batch, npoints, _ = normalized_points.shape # out_h, out_w = heatmap_size # points = denormalize_points(normalized_points, out_h, out_w) # # (batch x npoints) x 1 x h x w # heatmap = torch.zeros( # batch * npoints, 1, out_h, out_w).to(points) # # (batch x npoints) x 2 # points_flatten = points.view(-1, 2) # # (batch x npoints) # batch_inds = torch.arange( # batch * npoints, dtype=torch.int32).cuda() # # (batch x npoints) x 1 # points_color = torch.ones( # points_flatten.size(0), 1).to(points_flatten) # # (batch x npoints) x 1 x h x w # heatmap = p2i(points_flatten, points_color, batch_inds=batch_inds, background=heatmap, # kernel_radius=kernel_radius, # kernel_kind_str='gaussian_awing', reduce='max') # # batch x npoints x h x w # heatmap = heatmap.reshape(batch, npoints, out_h, out_w) # return heatmap def heatmap2points(heatmap, t_scale: Union[None, float, torch.Tensor] = None): """ Heatmaps -> normalized points [b x npoints x 2(XY)]. """ dtype = heatmap.dtype _, _, h, w = heatmap.shape # 0 ~ h-1, 0 ~ w-1 yy, xx = torch.meshgrid( torch.arange(h).float(), torch.arange(w).float()) yy = yy.view(1, 1, h, w).to(heatmap) xx = xx.view(1, 1, h, w).to(heatmap) if t_scale is not None: heatmap = (heatmap * t_scale).exp() heatmap_sum = torch.clamp(heatmap.sum([2, 3]), min=1e-6) yy_coord = (yy * heatmap).sum([2, 3]) / heatmap_sum # b x npoints xx_coord = (xx * heatmap).sum([2, 3]) / heatmap_sum # b x npoints points = torch.stack([xx_coord, yy_coord], dim=-1) # b x npoints x 2 normalized_points = normalize_points(points, h, w) return normalized_points def _expand_as_rgbs(x): _, c, _, _ = x.shape if c == 3: return [x] if c % 3 > 0: x = torch.cat([ x, x[:, [-1], :, :].expand( -1, 3 - c % 3, -1, -1)], dim=1) c = x.size(1) assert c % 3 == 0 return list(x.split([3] * (c // 3), dim=1)) def _visualize_flags(flags, size, num_flags): batch_size = flags.size(0) flags = flags.to(dtype=torch.uint8) has_what = [flags & torch.full_like(flags, 1 << i) for i in range(num_flags)] # batch x 1 x 1 x 4 vis_im = torch.stack(has_what, dim=1).float().view( batch_size, 1, 1, num_flags) vis_im = F.interpolate(vis_im.expand(-1, 3, -1, -1), size=size, mode='nearest') return vis_im # def visualize_in_row(*data) -> torch.Tensor: # """Visualize data in one row. # Args: # *data (list): A list of (value, modal, [v_min, v_max]) tuples. # Each tuple defines the following inputs: # value (torch.Tensor): The data value to visualize. # modal (str): The modal type string of the data. # Supported data modal types are: # * "BHW", "BNHW", "BHWN" for tensors; # * "flags_{K}" for binary flags, with K being the number of bits; # * "points" for points, where `value` is a tensor with shape [B, N, 2]. # v_min (float): Optional, to normalize value. # v_max (float): Optional, to normalize value. # Returns: # torch.Tensor: A tensor with shape b x 3 x h x w. # """ # batch = None # size = None # device = None # row = [] # for v in data: # assert isinstance(v, (tuple, list)) # if len(v) == 2: # value, modal = v # v_min, v_max = 0.0, 1.0 # elif len(v) == 4: # value, modal, v_min, v_max = v # else: # raise RuntimeError( # 'Input either (value, modal) or (value, modal, v_min, v_max)') # if value is None: # assert batch is not None # assert size is not None # assert device is not None # value = torch.rand(batch, 1, size[0], size[1], device=device) # modal = 'BNHW' # v_min, v_max = 0.0, 1.0 # if modal == 'BHW': # assert isinstance(value, torch.Tensor) # value = value.detach().float() # batch = value.size(0) # size = value.shape[1:] # device = value.device # value = (value - v_min) / (v_max - v_min) # row.append(value.unsqueeze( # 1).expand(-1, 3, -1, -1)) # elif modal == 'BNHW': # assert isinstance(value, torch.Tensor) # value = value.detach().float() # batch = value.size(0) # size = value.shape[2:] # device = value.device # value = (value - v_min) / (v_max - v_min) # row += _expand_as_rgbs(value) # elif modal == 'BHWN': # assert isinstance(value, torch.Tensor) # value = value.detach().float().permute(0, 3, 1, 2) # batch = value.size(0) # size = value.shape[2:] # device = value.device # value = (value - v_min) / (v_max - v_min) # row += _expand_as_rgbs(value) # elif modal.startswith('flags_'): # assert isinstance(value, torch.Tensor) # value = value.detach().float() # batch = value.size(0) # device = value.device # num_flags = int(modal.split('_')[1]) # assert size is not None # row.append(_visualize_flags(value, size, num_flags)) # elif modal == 'points': # points, background = value # if background is None: # background = torch.rand( # batch, 1, size[0], size[1], device=device) # else: # assert isinstance(background, torch.Tensor) # background = background.detach().float() # background = (background - v_min) / (v_max - v_min) # if points is None: # canvas = background # else: # assert isinstance(points, torch.Tensor) # points = points.detach().float() # points = denormalize_points( # points, background.size(2), background.size(3)) # npoints = points.size(1) # batch = background.size(0) # assert points.size(0) == batch # channels = background.size(1) # points = points.reshape(npoints * batch, 2) # point_colors = torch.ones( # npoints * batch, channels, dtype=background.dtype, device=background.device) # batch_inds = torch.arange(batch).unsqueeze(1).expand(-1, npoints).reshape( # npoints * batch).to(dtype=torch.int32, device=background.device) # canvas = p2i(points, point_colors, batch_inds, background, 5) # row.append(canvas) # return torch.cat(row, dim=-1) import math def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr): """Decay the learning rate""" lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr for param_group in optimizer.param_groups: param_group['lr'] = lr def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr): """Warmup the learning rate""" lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step) for param_group in optimizer.param_groups: param_group['lr'] = lr def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate): """Decay the learning rate""" lr = max(min_lr, init_lr * (decay_rate**epoch)) for param_group in optimizer.param_groups: param_group['lr'] = lr import numpy as np import io import os import time from collections import defaultdict, deque import datetime import torch import torch.distributed as dist class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def global_avg(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {:.4f}".format(name, meter.global_avg) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def compute_acc(logits, label, reduction='mean'): ret = (torch.argmax(logits, dim=1) == label).float() if reduction == 'none': return ret.detach() elif reduction == 'mean': return ret.mean().item() def compute_n_params(model, return_str=True): tot = 0 for p in model.parameters(): w = 1 for x in p.shape: w *= x tot += w if return_str: if tot >= 1e6: return '{:.1f}M'.format(tot / 1e6) else: return '{:.1f}K'.format(tot / 1e3) else: return tot def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}, word {}): {}'.format( args.rank, args.world_size, args.dist_url), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0)