import numpy as np import time import datetime import torch import torch.nn.functional as F import torch.distributed as dist from models import utils @torch.no_grad() def evaluation(args, model, data_loader, device): # test model.eval() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Evaluation:' print('Computing features for evaluation...') start_time = time.time() num_tasks = utils.get_world_size() rank = utils.get_rank() # ======================================== text feature ======================================== # texts = data_loader.dataset.text num_text = len(texts) text_bs = 256 text_ids = [] text_embeds = [] text_atts = [] for i in range(0, num_text, text_bs): text = texts[i: min(num_text, i + text_bs)] text_input = model.tokenizer(text, padding='max_length', truncation=True, max_length=65, return_tensors="pt").to(device) text_feat = model.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, mode='text') text_embed = F.normalize(model.text_proj(text_feat.last_hidden_state[:,0,:]), dim=-1) text_embeds.append(text_embed) text_ids.append(text_input.input_ids) text_atts.append(text_input.attention_mask) text_embeds = torch.cat(text_embeds, dim=0) text_ids = torch.cat(text_ids, dim=0) text_atts = torch.cat(text_atts, dim=0) # ======================================== image&sketch feature ======================================== # image_feats = [] image_embeds = [] for i, (image, img_id) in enumerate(data_loader): image = image.to(device) image_feat = model.visual_encoder(image).last_hidden_state image_embed = F.normalize(model.vision_proj(image_feat[:,0,:]), dim=-1) image_feats.append(image_feat.cpu()) image_embeds.append(image_embed) image_feats = torch.cat(image_feats, dim=0).to(device) image_embeds = torch.cat(image_embeds, dim=0).to(device) print('Computing features Cost time {}'.format(time.time() - start_time)) # ======================================== i2t score ======================================== # sims_matrix = image_embeds @ text_embeds.t() score_matrix_i2t = torch.full((len(data_loader.dataset.image), len(texts)), -100.0).to(device) step = sims_matrix.size(0) // num_tasks + 1 start = rank * step end = min(sims_matrix.size(0), start + step) k_test = 256 for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)): topk_sim, topk_idx = sims.topk(k=k_test, dim=0) encoder_output = image_feats[start + i].repeat(k_test, 1, 1).to(device) encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device) output = model.text_encoder(text_ids[topk_idx], attention_mask=text_atts[topk_idx], encoder_hidden_states=encoder_output, encoder_attention_mask=encoder_att, return_dict=True, ) score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1] score_matrix_i2t[start + i, topk_idx] = score + topk_sim # ======================================== t2i score ======================================== # sims_matrix = sims_matrix.t() score_matrix_t2i = torch.full((len(texts), len(data_loader.dataset.image)), -100.0).to(device) step = sims_matrix.size(0) // num_tasks + 1 start = rank * step end = min(sims_matrix.size(0), start + step) for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)): topk_sim, topk_idx = sims.topk(k=k_test, dim=0) encoder_output = image_feats[topk_idx].to(device) encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device) output = model.text_encoder(text_ids[start + i].repeat(k_test, 1), attention_mask=text_atts[start + i].repeat(k_test, 1), encoder_hidden_states=encoder_output, encoder_attention_mask=encoder_att, return_dict=True, ) score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1] score_matrix_t2i[start + i, topk_idx] = topk_sim + score if args.distributed: dist.barrier() torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM) torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Evaluation time {}'.format(total_time_str)) return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy() @torch.no_grad() def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt): # Images->Text ranks = np.zeros(scores_i2t.shape[0]) for index, score in enumerate(scores_i2t): inds = np.argsort(score)[::-1] # Score rank = 1e20 for i in img2txt[index]: tmp = np.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank # Compute metrics tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) # Text->Images ranks = np.zeros(scores_t2i.shape[0]) for index, score in enumerate(scores_t2i): inds = np.argsort(score)[::-1] ranks[index] = np.where(inds == txt2img[index])[0][0] # Compute metrics ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) tr_mean = (tr1 + tr5 + tr10) / 3 ir_mean = (ir1 + ir5 + ir10) / 3 r_mean = (tr_mean + ir_mean) / 2 eval_result = { 'txt_r1': tr1, 'txt_r5': tr5, 'txt_r10': tr10, 'txt_r_mean': tr_mean, 'img_r1': ir1, 'img_r5': ir5, 'img_r10': ir10, 'img_r_mean': ir_mean, 'r_mean': r_mean} return eval_result