justin13barrett's picture
Upload TFBertForSequenceClassification
07ed740
|
raw
history blame
4.98 kB
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_keras_callback
model-index:
  - name: >-
      bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract
    results: []

bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.4942
  • Train Categorical Accuracy: 0.0002
  • Train Top 2 Categorical Accuracy: 0.0005
  • Train Top 10 Categorical Accuracy: 0.0024
  • Validation Loss: 3.0737
  • Validation Categorical Accuracy: 0.0003
  • Validation Top 2 Categorical Accuracy: 0.0006
  • Validation Top 10 Categorical Accuracy: 0.0028
  • Train Accuracy: 0.4846
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 6e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 6e-05, 'decay_steps': 335420, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Categorical Accuracy Train Top 2 Categorical Accuracy Train Top 10 Categorical Accuracy Validation Loss Validation Categorical Accuracy Validation Top 2 Categorical Accuracy Validation Top 10 Categorical Accuracy Train Accuracy Epoch
4.8075 0.0001 0.0002 0.0020 3.6686 0.0000 0.0001 0.0017 0.3839 0
3.4867 0.0002 0.0004 0.0028 3.3360 0.0001 0.0002 0.0014 0.4337 1
3.1865 0.0002 0.0004 0.0027 3.2005 0.0002 0.0005 0.0033 0.4556 2
2.9969 0.0002 0.0005 0.0027 3.1379 0.0001 0.0002 0.0014 0.4675 3
2.8489 0.0002 0.0004 0.0025 3.0900 0.0002 0.0005 0.0031 0.4746 4
2.7212 0.0002 0.0005 0.0025 3.0744 0.0002 0.0003 0.0021 0.4799 5
2.6035 0.0002 0.0004 0.0025 3.0660 0.0002 0.0004 0.0023 0.4831 6
2.4942 0.0002 0.0005 0.0024 3.0737 0.0003 0.0006 0.0028 0.4846 7

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.13.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0