import torch # ! amazing!!!! autograd.grad with set_detect_anomaly(True) will cause memory leak # ! https://github.com/pytorch/pytorch/issues/51349 # torch.autograd.set_detect_anomaly(True) import torch.nn as nn import torch.nn.functional as F from inplace_abn import InPlaceABN ############################################# MVS Net models ################################################ class ConvBnReLU(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, pad=1, norm_act=InPlaceABN): super(ConvBnReLU, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=pad, bias=False) self.bn = norm_act(out_channels) def forward(self, x): return self.bn(self.conv(x)) class ConvBnReLU3D(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, pad=1, norm_act=InPlaceABN): super(ConvBnReLU3D, self).__init__() self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=pad, bias=False) self.bn = norm_act(out_channels) # self.bn = nn.ReLU() def forward(self, x): return self.bn(self.conv(x)) ################################### feature net ###################################### class FeatureNet(nn.Module): """ output 3 levels of features using a FPN structure """ def __init__(self, norm_act=InPlaceABN): super(FeatureNet, self).__init__() self.conv0 = nn.Sequential( ConvBnReLU(3, 8, 3, 1, 1, norm_act=norm_act), ConvBnReLU(8, 8, 3, 1, 1, norm_act=norm_act)) self.conv1 = nn.Sequential( ConvBnReLU(8, 16, 5, 2, 2, norm_act=norm_act), ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act), ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act)) self.conv2 = nn.Sequential( ConvBnReLU(16, 32, 5, 2, 2, norm_act=norm_act), ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act), ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act)) self.toplayer = nn.Conv2d(32, 32, 1) self.lat1 = nn.Conv2d(16, 32, 1) self.lat0 = nn.Conv2d(8, 32, 1) # to reduce channel size of the outputs from FPN self.smooth1 = nn.Conv2d(32, 16, 3, padding=1) self.smooth0 = nn.Conv2d(32, 8, 3, padding=1) def _upsample_add(self, x, y): return F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True) + y def forward(self, x): # x: (B, 3, H, W) conv0 = self.conv0(x) # (B, 8, H, W) conv1 = self.conv1(conv0) # (B, 16, H//2, W//2) conv2 = self.conv2(conv1) # (B, 32, H//4, W//4) feat2 = self.toplayer(conv2) # (B, 32, H//4, W//4) feat1 = self._upsample_add(feat2, self.lat1(conv1)) # (B, 32, H//2, W//2) feat0 = self._upsample_add(feat1, self.lat0(conv0)) # (B, 32, H, W) # reduce output channels feat1 = self.smooth1(feat1) # (B, 16, H//2, W//2) feat0 = self.smooth0(feat0) # (B, 8, H, W) # feats = {"level_0": feat0, # "level_1": feat1, # "level_2": feat2} return [feat2, feat1, feat0] # coarser to finer features