--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit_epochs5_batch32_lr5e-05_size224_tiles4_seed2_q1 results: - task: name: Image Classification type: image-classification dataset: name: Dogs_vs_Cats type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9832 --- # vit_epochs5_batch32_lr5e-05_size224_tiles4_seed2_q1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Dogs_vs_Cats dataset. It achieves the following results on the evaluation set: - Loss: 0.0483 - Accuracy: 0.9832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.044 | 1.0 | 469 | 0.0483 | 0.9832 | | 0.0205 | 2.0 | 938 | 0.0737 | 0.9824 | | 0.0003 | 3.0 | 1407 | 0.0791 | 0.984 | | 0.0001 | 4.0 | 1876 | 0.0713 | 0.9861 | | 0.0001 | 5.0 | 2345 | 0.0712 | 0.9864 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.19.1