{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdb5a545580>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680854109970427959, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGZZnj++D0M/MAn9PlWJmL9+gVG/WTFoPjsJHEDezoE9qRTnvm/ci7+6m7U/kU/Yv+OuA0Ds18y82a0HwP1muz71vnO/w8mKP3QcYz8nd6++7hFiP2+GZz97Q7m8mWRiPg3dn7/a9do+vcTqv1raaT8dT14/OsI7v+niSj41Pp4/UUiuvy2nAMAUVgm/vS+wv0QYkz5xSl6/1P21PuOv7r880A+/voPZPodqAD8zlIA/B/uBv7dXST8SWmY/iWCPviZEVb76YxrAk69DPfSo+T8N3Z+/2vXaPr3E6r9LH4y/zp3bvju0iDt1rhQ//SiAPzipmb+CJpU/cZQbvkxsR7/rQ7U++tckwBYhSr8PQ9a/k0WQvyPU974EqPk+Vw3BP6mtv75OVS2/kxVlP5ZM/bwUKg08D3JJwCGyMD8Ph/k+Dd2fv9r12j5nkws/Sx+Mv9AAPT9IOoe/vEsavhrvAEAkx/a/9+alv51U/D5DoYS/0PlbPVWlEcAJIho/M0MDwJDUWL8vPeU+sx8Dv9yAiz97SpO/LLaAvsp2Zj+DOXo8X0EWPy68d7+xUOU+jI0dQA3dn7/a9do+Z5MLP0sfjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADCr8O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArKwHPgAAAAARZ9y/AAAAAPEypbwAAAAAkkzqPwAAAABE8fK9AAAAAJUw9T8AAAAAKkChvAAAAAC63ADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjujVtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIg6xb0AAAAA0+D1vwAAAAB1mLs9AAAAAM/V6T8AAAAA/e4OvgAAAACVBPU/AAAAAF1w5D0AAAAAnL75vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKzTTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBAn2C9AAAAAOVp2b8AAAAAi2RrPAAAAABphe4/AAAAADXOsTwAAAAAmeUAQAAAAAA1ai29AAAAAFuCAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACb80W2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWKeBPQAAAACK1/K/AAAAAJJLfr0AAAAAjHHyPwAAAADPTBy9AAAAAG/w3j8AAAAAWpQSvQAAAAA4+um/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVLwUypJf+MAWyUTegDjAF0lEdAsR15Gc4HX3V9lChoBkdAmgK4TXarWGgHTegDaAhHQLEgLD+BH091fZQoaAZHQI3uJQLux8loB03oA2gIR0CxITIQJ5VwdX2UKGgGR0CYmPqaPS2IaAdN6ANoCEdAsSFzPAwfyXV9lChoBkdAmH0emzjWCmgHTegDaAhHQLEmLLFXJYF1fZQoaAZHQJyyONxVAA1oB03oA2gIR0CxKawWac7RdX2UKGgGR0CZhfRHf/FSaAdN6ANoCEdAsSq4kVvddnV9lChoBkdAl2bNFa0Qb2gHTegDaAhHQLEq9wfhddF1fZQoaAZHQJhPKC7K7qZoB03oA2gIR0CxLmsRDkU9dX2UKGgGR0CZy9OcUdq+aAdN6ANoCEdAsTEo2ETQFHV9lChoBkdAmfcDeO4oZ2gHTegDaAhHQLEyNmMwUQF1fZQoaAZHQJbnHlCCz1NoB03oA2gIR0CxMn/YFqzrdX2UKGgGR0CbUZHaews5aAdN6ANoCEdAsTe/kU9IPXV9lChoBkdAlxLFx4ptrWgHTegDaAhHQLE6sIbwSap1fZQoaAZHQJtCGvhZQpFoB03oA2gIR0CxO7z1TR6XdX2UKGgGR0CZREq1gH/taAdN6ANoCEdAsTv59uxbCHV9lChoBkdAnleBBAv+O2gHTegDaAhHQLE/gBo24ut1fZQoaAZHQJqPoy6+WW1oB03oA2gIR0CxQjQX2ugZdX2UKGgGR0CSg2RPXTVlaAdN6ANoCEdAsUOVy/9Hc3V9lChoBkdAmKJl/2Cd0GgHTegDaAhHQLFD8L5RCQd1fZQoaAZHQJI/8VpKzzFoB03oA2gIR0CxSRx99c8ldX2UKGgGR0CcECUdaMaTaAdN6ANoCEdAsUvZ0T101nV9lChoBkdAknk7PyCnP2gHTegDaAhHQLFM6ijcmBx1fZQoaAZHQJp4sqPOpsJoB03oA2gIR0CxTSbwWnCPdX2UKGgGR0CbxYvCuU2UaAdN6ANoCEdAsVCwhA4XGnV9lChoBkdAlgmr8Nx2jmgHTegDaAhHQLFTwhBJI2B1fZQoaAZHQJsQlE1EVnFoB03oA2gIR0CxVUHscABDdX2UKGgGR0CZzeYDTz/ZaAdN6ANoCEdAsVWo7MgU13V9lChoBkdAmVnH84xUN2gHTegDaAhHQLFaUa5wwTN1fZQoaAZHQJJKQVj7Q9loB03oA2gIR0CxXShpDeCTdX2UKGgGR0CQofGza9K3aAdN6ANoCEdAsV45bTtsvnV9lChoBkdAgCCOjynUD2gHTegDaAhHQLFeeIOH3111fZQoaAZHQJZ+APH1e0JoB03oA2gIR0CxYf0RBeHBdX2UKGgGR0CVzfl/6O5saAdN6ANoCEdAsWWyyOaOP3V9lChoBkdAl/85PVNHpmgHTegDaAhHQLFnVyQPqcF1fZQoaAZHQJNzG0/nnuBoB03oA2gIR0CxZ7tqL0jDdX2UKGgGR0CWMsFMIu5CaAdN6ANoCEdAsWu3/+85CHV9lChoBkdAmrSazeGfw2gHTegDaAhHQLFugiqyWzF1fZQoaAZHQIwI7u8brC5oB03oA2gIR0Cxb56Y3Ns4dX2UKGgGR0CVsJwV0tAcaAdN6ANoCEdAsW/fO8kD6nV9lChoBkdAl3MiUs4DLmgHTegDaAhHQLFzqBTXJ5p1fZQoaAZHQJYjjyYoiLVoB03oA2gIR0Cxd8vVmSQpdX2UKGgGR0CZ5lO/+Kj0aAdN6ANoCEdAsXlPkcS5AnV9lChoBkdAlwvYfjjrA2gHTegDaAhHQLF5j8GLUCt1fZQoaAZHQJLmppcophFoB03oA2gIR0CxfSo0ZWJadX2UKGgGR0CSXfog3cYZaAdN6ANoCEdAsX/tJRO1v3V9lChoBkdAlZSKHbh3q2gHTegDaAhHQLGBAr2xptd1fZQoaAZHQJGgJUvPC2toB03oA2gIR0CxgUWr4nF6dX2UKGgGR0CX0204zabnaAdN6ANoCEdAsYWbQb+98XV9lChoBkdAlcFfGdZq22gHTegDaAhHQLGJqgLZzxR1fZQoaAZHQJkTxNFjNINoB03oA2gIR0CxirVMAWBSdX2UKGgGR0CZiiMEidJ8aAdN6ANoCEdAsYry0KJEY3V9lChoBkdAlebDdLxqf2gHTegDaAhHQLGOhNhmXgN1fZQoaAZHQJZAXO1OTJRoB03oA2gIR0CxkVFGTcIrdX2UKGgGR0CTdr9m6GxmaAdN6ANoCEdAsZJd/7SApnV9lChoBkdAlvGf2TPjXGgHTegDaAhHQLGSnLNwBHV1fZQoaAZHQJaxE53kgfVoB03oA2gIR0Cxl4N6gM+edX2UKGgGR0CWMSV0cOslaAdN6ANoCEdAsZr4I4VARnV9lChoBkdAlW1jcdo372gHTegDaAhHQLGcC5KODJ51fZQoaAZHQJSbXQkX1rZoB03oA2gIR0CxnEyGi5/cdX2UKGgGR0CY2gjNY8uBaAdN6ANoCEdAsZ/REE1VHXV9lChoBkdAlsfEk0JnhGgHTegDaAhHQLGikzwtrbh1fZQoaAZHQJiVlb5dnkFoB03oA2gIR0Cxo7MnJDE4dX2UKGgGR0CYb/qoqCpWaAdN6ANoCEdAsaQNLWZqmHV9lChoBkdAmta5Xp4bCWgHTegDaAhHQLGpXRYigTR1fZQoaAZHQIfJldeIEbJoB03oA2gIR0CxrEv1L8JldX2UKGgGR0CZJUUm2LHdaAdN6ANoCEdAsa1eWJJoTXV9lChoBkdAlZW0o4MnZ2gHTegDaAhHQLGtn+6RQrN1fZQoaAZHQJRkMgZCOWBoB03oA2gIR0CxsT/C66J7dX2UKGgGR0CKmJYNiH6/aAdN6ANoCEdAsbQ++De0onV9lChoBkdAltUAcT8HfWgHTegDaAhHQLG1w8aXKKZ1fZQoaAZHQHyabfcer+5oB03oA2gIR0CxtiWNR3vAdX2UKGgGR0Ca9xQhfShKaAdN6ANoCEdAsbr4HlfZ3HV9lChoBkdAkVVaMWGh3GgHTegDaAhHQLG9vhYNiH91fZQoaAZHQJhMjhsImgJoB03oA2gIR0CxvtFuBMBZdX2UKGgGR0Cc5ywH7gsLaAdN6ANoCEdAsb8Sslsxf3V9lChoBkdAmcCZQxesxWgHTegDaAhHQLHCnIHC4z91fZQoaAZHQJz6Rf/m1Y1oB03oA2gIR0Cxxg3OfNA1dX2UKGgGR0CZQtVDrqt6aAdN6ANoCEdAscelAeJYT3V9lChoBkdAmIkYTj/+9GgHTegDaAhHQLHIBxdpqRF1fZQoaAZHQJyYkTFl05loB03oA2gIR0CxzDXv6TGHdX2UKGgGR0CXIKjCpFTeaAdN6ANoCEdAsc7/jNpudnV9lChoBkdAmRVSn1nM+2gHTegDaAhHQLHQDSJTER91fZQoaAZHQJNj1IClrM1oB03oA2gIR0Cx0Evgeii7dX2UKGgGR0CTUOOsT37DaAdN6ANoCEdAsdPdqREF4nV9lChoBkdAgvpeKCQLeGgHTegDaAhHQLHX7/Ue+251fZQoaAZHQJyMgTM7lq9oB03oA2gIR0Cx2ZFBt1p1dX2UKGgGR0CXgAslb/wRaAdN6ANoCEdAsdnx4qwyI3V9lChoBkdAnIVa7NB4U2gHTegDaAhHQLHdhb1AZ891fZQoaAZHQJk3tK+SKWNoB03oA2gIR0Cx4EqVD8cddX2UKGgGR0Cb1ccE/0NCaAdN6ANoCEdAseFaMZP2wnV9lChoBkdAlX2Rqj8DS2gHTegDaAhHQLHhm6DXe3x1fZQoaAZHQJmr1qpLmIVoB03oA2gIR0Cx5YUJOWSmdX2UKGgGR0CX3tFF2FFlaAdN6ANoCEdAsem6PGQ0XXV9lChoBkdAlHrAp8WsR2gHTegDaAhHQLHq8qLCN0h1fZQoaAZHQJb/VKDkELZoB03oA2gIR0Cx6zCyt3fRdX2UKGgGR0CLnH2ovSMMaAdN6ANoCEdAse7Cqm0mdHV9lChoBkdAmRvxlDneSGgHTegDaAhHQLHxf7p3X7N1fZQoaAZHQJjH9xNqQBBoB03oA2gIR0Cx8ojxgAp8dX2UKGgGR0CJcH779AHFaAdN6ANoCEdAsfLH4cm0FHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}