File size: 13,832 Bytes
ffa1f50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
#!/usr/bin/env python3
"""
Demand Data Validation Visualization Module
Provides Streamlit visualization for demand data validation.
Shows which products are included/excluded from optimization and why.
"""
import pandas as pd
import streamlit as st
from typing import Dict
from src.config.constants import LineType
from src.demand_filtering import DemandFilter
# Simple mapping for product level names
LEVEL_NAMES = {
'prepack': 'prepack',
'subkit': 'subkit',
'master': {
'standalone': 'standalone_master',
'with_hierarchy': 'master_with_hierarchy'
},
'unclassified': 'no_hierarchy_data'
}
class DemandValidationViz:
"""
Simple visualization wrapper for demand filtering results.
All filtering logic is in DemandFilter - this just displays the results.
"""
def __init__(self):
self.filter_instance = DemandFilter()
self.speed_data = None
def load_data(self):
"""Load all data needed for visualization"""
try:
from src.config import optimization_config
from src.preprocess import extract
self.speed_data = extract.read_package_speed_data()
return self.filter_instance.load_data()
except Exception as e:
error_msg = f"Error loading data: {str(e)}"
print(error_msg)
if st:
st.error(error_msg)
return False
def validate_all_products(self) -> pd.DataFrame:
"""
Create DataFrame with validation results for all products.
Main visualization method - converts filtering results to displayable format.
"""
# Get analysis from filtering module
analysis = self.filter_instance.get_complete_product_analysis()
product_details = analysis['product_details']
results = []
for product_id, details in product_details.items():
# Calculate production hours if speed data available
speed = self.speed_data.get(product_id) if self.speed_data else None
production_hours = (details['demand'] / speed) if speed and speed > 0 else None
# Get line type name
line_type_id = details['line_assignment']
line_name = LineType.get_name(line_type_id) if line_type_id is not None else "no_assignment"
# Get level name (simplified)
ptype = details['product_type']
if ptype == 'unclassified':
level_name = LEVEL_NAMES['unclassified']
elif ptype == 'master':
level_name = LEVEL_NAMES['master']['standalone' if details['is_standalone_master'] else 'with_hierarchy']
else:
level_name = LEVEL_NAMES.get(ptype, f"level_{ptype}")
# Build validation status message
if not details['is_included_in_optimization']:
validation_status = f"π« Excluded: {', '.join(details['exclusion_reasons'])}"
else:
issues = []
if speed is None:
issues.append("missing_speed_data (will use default)")
if not details['has_hierarchy']:
issues.append("no_hierarchy_data")
validation_status = f"β οΈ Data Issues: {', '.join(issues)}" if issues else "β
Ready for optimization"
if details['has_too_high_demand']:
issues.append("too_high_demand")
validation_status = f"β οΈ Data Issues: {', '.join(issues)}" if issues else "β
Ready for optimization"
results.append({
'Product ID': product_id,
'Demand': details['demand'],
'Product Type': ptype.title(),
'Level': level_name,
'Is Standalone Master': "Yes" if details['is_standalone_master'] else "No",
'Line Type ID': line_type_id if line_type_id else "N/A",
'Line Type': line_name,
'UNICEF Staff': details['unicef_staff'],
'Humanizer Staff': details['humanizer_staff'],
'Total Staff': details['total_staff'],
'Production Speed (units/hour)': f"{speed:.1f}" if speed else "N/A",
'Production Hours Needed': f"{production_hours:.1f}" if production_hours else "N/A",
'Has Line Assignment': "β
" if details['has_line_assignment'] else "β",
'Has Staffing Data': "β
" if details['has_staffing'] else "β",
'Has Speed Data': "β
" if speed is not None else "β (will use default)",
'Has Hierarchy Data': "β
" if details['has_hierarchy'] else "β",
'Excluded from Optimization': not details['is_included_in_optimization'],
'Exclusion Reasons': ', '.join(details['exclusion_reasons']) if details['exclusion_reasons'] else '',
'Data Quality Issues': ', '.join(issues) if details['is_included_in_optimization'] and 'issues' in locals() and issues else '',
'Has Too High Demand': "β
" if details['has_too_high_demand'] else "β",
'Validation Status': validation_status
})
df = pd.DataFrame(results)
df = df.sort_values(['Excluded from Optimization', 'Demand'], ascending=[False, False])
return df
def get_summary_statistics(self, df: pd.DataFrame) -> Dict:
"""Calculate summary statistics from validation results"""
analysis = self.filter_instance.get_complete_product_analysis()
included_df = df[df['Excluded from Optimization'] == False]
return {
'total_products': analysis['total_products'],
'total_demand': analysis['total_demand'],
'included_products': analysis['included_count'],
'excluded_products': analysis['excluded_count'],
'included_demand': analysis['included_demand'],
'excluded_demand': analysis['excluded_demand'],
'type_counts': df['Product Type'].value_counts().to_dict(),
'no_line_assignment': len(included_df[included_df['Has Line Assignment'] == "β"]),
'no_staffing': len(included_df[included_df['Has Staffing Data'] == "β"]),
'no_speed': len(included_df[included_df['Has Speed Data'].str.contains("β")]),
'no_hierarchy': len(included_df[included_df['Has Hierarchy Data'] == "β"]),
'standalone_masters': analysis['standalone_masters_count'],
'total_unicef_needed': sum(p['unicef_staff'] for p in analysis['product_details'].values()),
'total_humanizer_needed': sum(p['humanizer_staff'] for p in analysis['product_details'].values()),
'excluded_with_too_high_demand': analysis['excluded_with_too_high_demand_count']
}
def display_demand_validation():
"""
Display demand validation analysis in Streamlit.
Main entry point for the validation page.
"""
st.header("π Demand Data Validation")
st.markdown("Analysis showing which products are included/excluded from optimization and data quality status.")
# Load and analyze data
validator = DemandValidationViz()
with st.spinner("Loading and analyzing data..."):
if not validator.load_data():
st.error("Failed to load data for validation.")
return
validation_df = validator.validate_all_products()
stats = validator.get_summary_statistics(validation_df)
# ===== SUMMARY METRICS =====
st.subheader("π Summary Statistics")
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total Products", stats['total_products'])
col1.metric("Included in Optimization", stats['included_products'], delta="Ready")
col2.metric("Total Demand", f"{stats['total_demand']:,}")
col2.metric("Excluded from Optimization", stats['excluded_products'], delta="Omitted")
col3.metric("Included Demand", f"{stats['included_demand']:,}", delta="Will be optimized")
col3.metric("UNICEF Staff Needed", stats['total_unicef_needed'])
col4.metric("Excluded Demand", f"{stats['excluded_demand']:,}", delta="Omitted")
col4.metric("Humanizer Staff Needed", stats['total_humanizer_needed'])
# ===== PRODUCT TYPE DISTRIBUTION =====
st.subheader("π Product Type Distribution")
if stats['type_counts']:
col1, col2 = st.columns(2)
with col1:
type_df = pd.DataFrame(list(stats['type_counts'].items()), columns=['Product Type', 'Count'])
st.bar_chart(type_df.set_index('Product Type'))
with col2:
for ptype, count in stats['type_counts'].items():
percentage = (count / stats['total_products']) * 100
st.write(f"**{ptype}:** {count} products ({percentage:.1f}%)")
# ===== DATA QUALITY ISSUES (for included products only) =====
st.subheader("β οΈ Data Quality Issues (Included Products)")
st.write("Issues affecting products that **will be** included in optimization:")
col1, col2, col3, col4 = st.columns(4)
col1.metric("No Line Assignment", stats['no_line_assignment'],
delta=None if stats['no_line_assignment'] == 0 else "Issue")
col2.metric("No Staffing Data", stats['no_staffing'],
delta=None if stats['no_staffing'] == 0 else "Issue")
col3.metric("No Speed Data", stats['no_speed'],
delta=None if stats['no_speed'] == 0 else "Will use default")
col4.metric("No Hierarchy Data", stats['no_hierarchy'],
delta=None if stats['no_hierarchy'] == 0 else "Issue")
col5.metric("Excluded: Too High Demand", stats['excluded_with_too_high_demand'],
delta=None if stats['excluded_with_too_high_demand'] == 0 else "Excluded")
# ===== INCLUDED PRODUCTS TABLE =====
included_df = validation_df[validation_df['Excluded from Optimization'] == False].copy()
excluded_df = validation_df[validation_df['Excluded from Optimization'] == True].copy()
st.subheader("β
Products Included in Optimization")
st.write(f"**{len(included_df)} products** with total demand of **{included_df['Demand'].sum():,} units**")
if len(included_df) > 0:
# Filters
col1, col2 = st.columns(2)
type_filter = col1.selectbox("Filter by type", ["All"] + list(included_df['Product Type'].unique()), key="inc_filter")
min_demand = col2.number_input("Minimum demand", min_value=0, value=0, key="inc_demand")
# Apply filters
filtered = included_df.copy()
if type_filter != "All":
filtered = filtered[filtered['Product Type'] == type_filter]
if min_demand > 0:
filtered = filtered[filtered['Demand'] >= min_demand]
# Display table
display_cols = ['Product ID', 'Demand', 'Product Type', 'Line Type', 'UNICEF Staff',
'Humanizer Staff', 'Production Speed (units/hour)', 'Data Quality Issues', 'Validation Status']
st.dataframe(filtered[display_cols], use_container_width=True, height=300)
else:
st.warning("No products are included in optimization!")
# ===== EXCLUDED PRODUCTS TABLE =====
st.subheader("π« Products Excluded from Optimization")
st.write(f"**{len(excluded_df)} products** with total demand of **{excluded_df['Demand'].sum():,} units**")
st.info("Excluded due to: missing line assignments, zero staffing, or non-standalone masters")
if len(excluded_df) > 0:
# Show exclusion breakdown
st.write("**Exclusion reasons:**")
for reason, count in excluded_df['Exclusion Reasons'].value_counts().items():
st.write(f"β’ {reason}: {count} products")
# Display table
display_cols = ['Product ID', 'Demand', 'Product Type', 'Exclusion Reasons',
'UNICEF Staff', 'Humanizer Staff', 'Line Type']
st.dataframe(excluded_df[display_cols], use_container_width=True, height=200)
# Export button
if st.button("π₯ Export Validation Results to CSV"):
st.download_button("Download CSV", validation_df.to_csv(index=False),
file_name="demand_validation_results.csv", mime="text/csv")
# ===== RECOMMENDATIONS =====
st.subheader("π‘ Recommendations")
if stats['excluded_products'] > 0:
st.warning(f"**{stats['excluded_products']} products** ({stats['excluded_demand']:,} units) excluded from optimization")
# Show data quality issues for included products
if stats['no_line_assignment'] > 0:
st.info(f"**Line Assignment**: {stats['no_line_assignment']} included products missing line assignments")
if stats['no_staffing'] > 0:
st.info(f"**Staffing Data**: {stats['no_staffing']} included products missing staffing requirements")
if stats['no_speed'] > 0:
st.info(f"**Speed Data**: {stats['no_speed']} included products missing speed data (will use default 106.7 units/hour)")
if stats['no_hierarchy'] > 0:
st.info(f"**Hierarchy Data**: {stats['no_hierarchy']} included products not in kit hierarchy")
# Overall status
if stats['included_products'] > 0:
st.success(f"β
**{stats['included_products']} products** with {stats['included_demand']:,} units demand ready for optimization!")
if stats['no_speed'] == 0 and stats['no_hierarchy'] == 0:
st.info("π All included products have complete data!")
else:
st.error("β No products passed filtering. Review exclusion reasons and check data configuration.")
if __name__ == "__main__":
# For testing
display_demand_validation()
|