ARG AWS_REGION # SageMaker PyTorch image FROM 763104351884.dkr.ecr.${AWS_REGION}.amazonaws.com/pytorch-training:2.1.0-gpu-py310-cu121-ubuntu20.04-sagemaker # Run custom installation of libraries # RUN pip install xxx # RUN apt-get update && apt-get install -y xxx # ENV # etc.... # Remove the conda installed symlink for libcurl, which causes an error with curl. # Fixes the following error: # curl: /opt/conda/lib/libcurl.so.4: no version information available (required by curl) RUN rm /opt/conda/lib/libcurl.so.4 ENV PATH="/opt/ml/code:${PATH}" # this environment variable is used by the SageMaker PyTorch container to determine our user code directory. ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code # /opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory to store your user code. COPY . /opt/ml/code/ RUN rm /opt/ml/code/setup.py RUN pip install -r /opt/ml/code/requirements.txt RUN pip uninstall flash-attn -y RUN pip install flash-attn>=2.2 # # Prevent sagemaker from installing requirements again. # RUN rm /opt/ml/code/setup.py RUN rm /opt/ml/code/requirements.txt # Defines a script entrypoint ENV SAGEMAKER_PROGRAM open_lm/main.py