import numbers from functools import partial from typing import Union, List import torch from torch import Tensor, Size import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter class LayerNorm(nn.Module): # NOTE: taken from official pytorch implementation and modified # to allow revoval of gain and bias independently def __init__( self, normalized_shape: Union[int, List[int], Size], eps: float = 0.00001, elementwise_gain: bool = True, elementwise_bias: bool = True, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.elementwise_gain = elementwise_gain self.elementwise_bias = elementwise_bias if self.elementwise_gain: self.weight = Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) else: self.register_parameter("weight", None) if self.elementwise_bias: self.bias = Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) else: self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: if self.elementwise_gain: with torch.no_grad(): self.weight.fill_(1.0) if self.elementwise_bias: with torch.no_grad(): self.bias.zero_() def forward(self, input: Tensor) -> Tensor: return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps) def extra_repr(self) -> str: return ( "{normalized_shape}, eps={eps}, " "elementwise_gain={elementwise_gain}, " "elementwise_bias={elementwise_bias}".format(**self.__dict__) ) class LPLayerNorm(LayerNorm): """From MosaicML composer. See: https://github.com/mosaicml/composer/blob/6acca4c70425455be7280a5459dbf02e1ac5591d/composer/algorithms/low_precision_layernorm/low_precision_layernorm.py#L63 """ def forward(self, x): module_device = x.device downcast_x = _cast_if_autocast_enabled(x) downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias with torch.autocast(enabled=False, device_type=module_device.type): return F.layer_norm( downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps, ) def _cast_if_autocast_enabled(tensor): if torch.is_autocast_enabled(): if tensor.device.type == "cuda": dtype = torch.get_autocast_gpu_dtype() elif tensor.device.type == "cpu": dtype = torch.get_autocast_cpu_dtype() else: raise NotImplementedError() return tensor.to(dtype=dtype) return tensor class RmsNorm(nn.Module): def __init__( self, normalized_shape: Union[int, List[int], Size], eps: float = 1e-6, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.weight = Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) self.reset_parameters() def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight def reset_parameters(self) -> None: with torch.no_grad(): self.weight.fill_(1.0) def extra_repr(self) -> str: return "{normalized_shape}, eps={eps} ".format(**self.__dict__) def get_norm_class(model_norm): if model_norm == "default_layer_norm": return torch.nn.LayerNorm elif model_norm == "lp_layer_norm": return LPLayerNorm elif model_norm == "gain_only_lp_layer_norm": return partial(LPLayerNorm, elementwise_gain=True, elementwise_bias=False) elif model_norm == "gain_only_layer_norm": return partial(LayerNorm, elementwise_gain=True, elementwise_bias=False) elif model_norm == "no_wb_layer_norm": return partial(LayerNorm, elementwise_gain=False, elementwise_bias=False) elif model_norm == "rms_norm": return RmsNorm else: raise ValueError(f"Unsupported model-norm: {model_norm}")