"""Script to generate text from a trained model using HuggingFace wrappers.""" import argparse import json import builtins as __builtin__ import torch import os import pandas as pd import multiprocessing as mp import sys sys.path.append("/home/ubuntu/model_sft/zr/open_lm") from composer.utils import dist, get_device from open_lm.utils.transformers.hf_model import OpenLMforCausalLM from open_lm.utils.transformers.hf_config import OpenLMConfig from open_lm.utils.llm_foundry_wrapper import SimpleComposerOpenLMCausalLM from open_lm.model import create_params from open_lm.params import add_model_args from transformers import GPTNeoXTokenizerFast, LlamaTokenizerFast builtin_print = __builtin__.print def load_model_and_tokenizer(args): """ 加载模型和分词器 """ open_lm = OpenLMforCausalLM(OpenLMConfig(create_params(args))) if "gpt-neox-20b" in args.tokenizer: tokenizer = GPTNeoXTokenizerFast.from_pretrained("EleutherAI/gpt-neox-20b") elif "llama" in args.tokenizer: tokenizer = LlamaTokenizerFast.from_pretrained(args.tokenizer) else: raise ValueError(f"Unknown tokenizer {args.tokenizer}") if args.checkpoint is not None: print("Loading checkpoint from disk...") checkpoint = torch.load(args.checkpoint) state_dict = checkpoint["state_dict"] state_dict = {x.replace("module.", ""): y for x, y in state_dict.items()} open_lm.model.load_state_dict(state_dict) open_lm.model.eval() return open_lm, tokenizer @torch.inference_mode() def run_model(open_lm: OpenLMforCausalLM, tokenizer, input_text, args): dist.initialize_dist(get_device(None), timeout=600) input_text_loads = json.loads(input_text) input = tokenizer(input_text_loads['instruction'] + " " + input_text_loads['input']) input = {k: torch.tensor(v).unsqueeze(0).cuda() for k, v in input.items()} composer_model = SimpleComposerOpenLMCausalLM(open_lm, tokenizer) composer_model = composer_model.cuda() generate_args = { "do_sample": args.temperature > 0, "pad_token_id": 50282, "max_new_tokens": args.max_gen_len, "use_cache": args.use_cache, "num_beams": args.num_beams, } if args.temperature > 0: generate_args["temperature"] = args.temperature generate_args["top_p"] = args.top_p output = composer_model.generate( input["input_ids"], **generate_args, eos_token_id=[0], ) len_input = len(input["input_ids"][0]) output_text = tokenizer.decode(output[0][len_input:].cpu().numpy()) return { "instruction": input_text_loads['instruction'], "input": input_text_loads['input'], "output": output_text } def main(): parser = argparse.ArgumentParser() parser.add_argument("--checkpoint") parser.add_argument("--model", type=str, default="open_lm_1b", help="Name of the model to use") parser.add_argument("--input-file", required=True, help="Input JSONL file path") parser.add_argument("--output-file", default="output.xlsx", help="Output Excel file path") parser.add_argument("--max-gen-len", default=200, type=int) parser.add_argument("--temperature", default=0.0, type=float) parser.add_argument("--top-p", default=0.95, type=float) parser.add_argument("--use-cache", default=False, action="store_true") parser.add_argument("--tokenizer", default="EleutherAI/gpt-neox-20b", type=str) parser.add_argument("--num-beams", default=1, type=int) parser.add_argument("--num-workers", default=4, type=int) add_model_args(parser) args = parser.parse_args() open_lm, tokenizer = load_model_and_tokenizer(args) with open(args.input_file, 'r') as f: input_texts = [line.strip() for line in f] with mp.Pool(processes=args.num_workers) as pool: results = pool.starmap(run_model, [(open_lm, tokenizer, input_text, args) for input_text in input_texts]) df = pd.DataFrame(results) df.to_excel(args.output_file, index=False) print(f"Results saved to {args.output_file}") if __name__ == "__main__": main()