---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Qwen2.5-Coder-7B-Erebus-FIM
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: Qwen/Qwen2.5-Coder-7B
trust_remote_code: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: nyxkrage/erebus-87k-fim-8k
data_files: data/*
type:
field_instruction: prefix
field_input: suffix
field_output: middle
format: "<|fim_suffix|>{input}<|fim_prefix|>{instruction}<|fim_middle|>"
dataset_prepared_path:
val_set_size: 0
output_dir: /workspace/data/output
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 256
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: qwen2.5-coder-7b-erebus-fim
wandb_entity: kragelund
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
hub_model_id: NyxKrage/Qwen2.5-Coder-7B-Erebus-FIM
hub_strategy: all_checkpoints
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: true
warmup_steps: 100
evals_per_epoch: 1
saves_per_epoch: 4
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.1
special_tokens:
```
# Qwen2.5-Coder-7B-Erebus-FIM
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B](https://huggingface.co/Qwen/Qwen2.5-Coder-7B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1