--- license: apache-2.0 base_model: NovoCode/Novocode7b-v2 tags: - generated_from_trainer model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: NovoCode/Novocode7b-v2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Intel/orca_dpo_pairs type: system_prompt: "" field_system: system field_instruction: question field_output: chosen field_output: rejected format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" dataset_prepared_path: val_set_size: 0.05 output_dir: ./out sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# out This model is a fine-tuned version of [NovoCode/Novocode7b-v2](https://huggingface.co/NovoCode/Novocode7b-v2) on the Intel/orca_dpo_pairs dataset. It achieves the following results on the evaluation set: - Loss: 0.6792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7565 | 0.01 | 1 | 0.8244 | | 0.4845 | 0.26 | 24 | 0.4685 | | 0.4594 | 0.51 | 48 | 0.4435 | | 0.4399 | 0.77 | 72 | 0.4284 | | 0.3115 | 1.01 | 96 | 0.4221 | | 0.2008 | 1.26 | 120 | 0.4614 | | 0.2212 | 1.52 | 144 | 0.4552 | | 0.2101 | 1.78 | 168 | 0.4516 | | 0.119 | 2.02 | 192 | 0.4547 | | 0.0925 | 2.27 | 216 | 0.5502 | | 0.096 | 2.53 | 240 | 0.5751 | | 0.0967 | 2.78 | 264 | 0.5774 | | 0.0537 | 3.02 | 288 | 0.5765 | | 0.0576 | 3.28 | 312 | 0.6687 | | 0.0526 | 3.54 | 336 | 0.6786 | | 0.0492 | 3.79 | 360 | 0.6792 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0