""" Adapted from [MosaiclML](https://github.com/mosaicml/examples.git) and [minGPT](https://github.com/karpathy/minGPT.git) """ from __future__ import annotations import logging import math import sys from abc import abstractmethod from collections import defaultdict from functools import partial from typing import ( Callable, Dict, Iterable, List, NamedTuple, Optional, Sequence, Set, Tuple, cast, ) import torch import torch.backends.cuda import torch.nn as nn import torch.nn.functional as F from torch import einsum from transformers.modeling_outputs import BaseModelOutputWithPast from .aliases import PathOrStr from .beam_search import BeamSearch, Constraint, FinalSequenceScorer, Sampler from .config import ( ActivationCheckpointingStrategy, ActivationType, BlockType, CheckpointType, FSDPWrapStrategy, LayerNormType, ModelConfig, ) from .exceptions import OLMoConfigurationError from .initialization import ModuleType, init_weights from .torch_util import ensure_finite_ if sys.version_info.minor > 8: from collections.abc import MutableMapping elif sys.version_info.minor == 8: from typing import MutableMapping else: raise SystemExit("This script supports Python 3.8 or higher") __all__ = [ "LayerNormBase", "LayerNorm", "RMSLayerNorm", "RotaryEmbedding", "Activation", "GELU", "ReLU", "SwiGLU", "BitLinear158", "OLMoBlock", "OLMoSequentialBlock", "OLMoParallelBlock", "OLMo", "OLMoOutput", "OLMoGenerateOutput", ] log = logging.getLogger(__name__) def activation_checkpoint_function(cfg: ModelConfig): preserve_rng_state = ( (cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0) ) from torch.utils.checkpoint import checkpoint return partial( checkpoint, preserve_rng_state=preserve_rng_state, use_reentrant=False, ) class BufferCache(dict, MutableMapping[str, torch.Tensor]): """ Cache for attention biases and other things that would normally be stored as buffers. We avoid using buffers because we've run into various issues doing so with FSDP. In general it appears the way FSDP handles buffers is not well-defined. It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into NaNs when they're synchronized due to casting or some other issue. """ def _non_meta_init_device(config: ModelConfig) -> torch.device: if config.init_device is not None and config.init_device != "meta": return torch.device(config.init_device) else: return torch.device("cuda" if torch.cuda.is_available() else "cpu") class Dropout(nn.Dropout): def forward(self, input: torch.Tensor) -> torch.Tensor: if self.p == 0.0: return input else: return F.dropout(input, self.p, self.training, self.inplace) class LayerNormBase(nn.Module): def __init__( self, config: ModelConfig, *, size: Optional[int] = None, elementwise_affine: Optional[bool] = True, eps: float = 1e-05, ): super().__init__() self.config = config self.eps = eps self.normalized_shape = (size or config.d_model,) if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine): self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device)) use_bias = self.config.bias_for_layer_norm if use_bias is None: use_bias = self.config.include_bias if use_bias: self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device)) else: self.register_parameter("bias", None) else: self.register_parameter("bias", None) self.register_parameter("weight", None) @abstractmethod def forward(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError @classmethod def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase: if config.layer_norm_type == LayerNormType.default: return LayerNorm(config, size=size, low_precision=False, **kwargs) elif config.layer_norm_type == LayerNormType.low_precision: return LayerNorm(config, size=size, low_precision=True, **kwargs) elif config.layer_norm_type == LayerNormType.rms: return RMSLayerNorm(config, size=size, **kwargs) else: raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'") def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor: # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function # `is_autocast_cpu_enabled()` for CPU autocast. # See https://github.com/pytorch/pytorch/issues/110966. if tensor.device.type == "cuda" and torch.is_autocast_enabled(): return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype()) elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled(): return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype()) else: return tensor def reset_parameters(self): if self.weight is not None: torch.nn.init.ones_(self.weight) # type: ignore if self.bias is not None: torch.nn.init.zeros_(self.bias) # type: ignore class LayerNorm(LayerNormBase): """ The default :class:`LayerNorm` implementation which can optionally run in low precision. """ def __init__( self, config: ModelConfig, size: Optional[int] = None, low_precision: bool = False, elementwise_affine: Optional[bool] = None, eps: float = 1e-05, ): super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) self.low_precision = low_precision def forward(self, x: torch.Tensor) -> torch.Tensor: if self.low_precision: module_device = x.device downcast_x = self._cast_if_autocast_enabled(x) downcast_weight = ( self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight ) downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias with torch.autocast(enabled=False, device_type=module_device.type): return F.layer_norm( downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps ) else: return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps) class RMSLayerNorm(LayerNormBase): """ RMS layer norm, a simplified :class:`LayerNorm` implementation """ def __init__( self, config: ModelConfig, size: Optional[int] = None, elementwise_affine: Optional[bool] = None, eps: float = 1e-5, ): super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) def forward(self, x: torch.Tensor) -> torch.Tensor: with torch.autocast(enabled=False, device_type=x.device.type): og_dtype = x.dtype x = x.to(torch.float32) variance = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(variance + self.eps) x = x.to(og_dtype) if self.weight is not None: if self.bias is not None: return self.weight * x + self.bias else: return self.weight * x else: return x class RotaryEmbedding(nn.Module): """ [Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864). """ def __init__(self, config: ModelConfig, cache: BufferCache): super().__init__() self.config = config self.__cache = cache # Warm up cache. self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config)) def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]: if ( (pos_sin := self.__cache.get("rope_pos_sin")) is not None and (pos_cos := self.__cache.get("rope_pos_cos")) is not None and pos_sin.shape[-2] >= seq_len and pos_cos.shape[-2] >= seq_len ): if pos_sin.device != device: pos_sin = pos_sin.to(device) self.__cache["rope_pos_sin"] = pos_sin if pos_cos.device != device: pos_cos = pos_cos.to(device) self.__cache["rope_pos_cos"] = pos_cos return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :] with torch.autocast(device.type, enabled=False): dim = self.config.d_model // self.config.n_heads inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim)) seq = torch.arange(seq_len, device=device, dtype=torch.float) freqs = einsum("i , j -> i j", seq, inv_freq) positions = torch.cat((freqs, freqs), dim=-1) pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :] self.__cache["rope_pos_sin"] = pos_sin self.__cache["rope_pos_cos"] = pos_cos return pos_sin, pos_cos def rotate_half(self, x: torch.Tensor) -> torch.Tensor: B, nh, T, hs = x.size() x = x.view(B, nh, T, 2, hs // 2) x1, x2 = x.unbind(dim=-2) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor: return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype) def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: if self.config.rope_full_precision: q_, k_ = q.float(), k.float() else: q_, k_ = q, k with torch.autocast(q.device.type, enabled=False): query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device) pos_sin = pos_sin.type_as(q_) pos_cos = pos_cos.type_as(q_) q_ = self.apply_rotary_pos_emb( pos_sin[:, :, key_len - query_len : key_len, :], pos_cos[:, :, key_len - query_len : key_len, :], q_, ) k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_) return q_.type_as(q), k_.type_as(k) class Activation(nn.Module): def __init__(self, config: ModelConfig): super().__init__() self.config = config @abstractmethod def forward(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError @property @abstractmethod def output_multiplier(self) -> float: raise NotImplementedError @classmethod def build(cls, config: ModelConfig) -> Activation: if config.activation_type == ActivationType.gelu: return cast(Activation, GELU(approximate="none")) elif config.activation_type == ActivationType.relu: return cast(Activation, ReLU(inplace=False)) elif config.activation_type == ActivationType.swiglu: return SwiGLU(config) else: raise NotImplementedError(f"Unknown activation: '{config.activation_type}'") class GELU(nn.GELU): @property def output_multiplier(self) -> float: return 1.0 class ReLU(nn.ReLU): @property def output_multiplier(self) -> float: return 1.0 class SwiGLU(Activation): def forward(self, x: torch.Tensor) -> torch.Tensor: x, gate = x.chunk(2, dim=-1) return F.silu(gate) * x @property def output_multiplier(self) -> float: return 0.5 def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor: att_bias = torch.triu( torch.ones(seq_len, seq_len, device=device, dtype=torch.float), diagonal=1, ) att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min) return att_bias.view(1, 1, seq_len, seq_len) # type: ignore def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor: if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len: if causal_bias.device != device: causal_bias = causal_bias.to(device) cache["causal_attention_bias"] = causal_bias return causal_bias with torch.autocast(device.type, enabled=False): causal_bias = causal_attention_bias(seq_len, device) cache["causal_attention_bias"] = causal_bias return causal_bias def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor: alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len) # shape: (1, 1, seq_len, seq_len) alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1) alibi_bias.abs_().mul_(-1) # shape: (n_heads,) m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device) m.mul_(config.alibi_bias_max / config.n_heads) # shape: (1, n_heads, seq_len, seq_len) return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1))) # type: ignore def activation_quant(x): """Per−token quantization to 8 bits. No grouping is needed for quantization. Args: x: an activation tensor with shape [n, d] Returns: y: a quantized activation tensor with shape [n, d] """ scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5) y = (x * scale).round().clamp_(-128, 127) / scale return y def weight_quant(w): """Per−tensor quantization to 1.58 bits. No grouping is needed for quantization. Args: w: a weight tensor with shape [d, k] Returns: u: a quantized weight with shape [d, k] """ scale = 1.0 / w.abs().mean().clamp_(min=1e-5) u = (w * scale).round().clamp_(-1, 1) / scale return u class BitLinear158(nn.Linear): """ This is only for training, and kernel optimization is needed for efficiency. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, config=None): super().__init__(in_features, out_features, bias, device, dtype) self.norm = RMSLayerNorm(config, elementwise_affine=False) def forward(self, x): """ Args: x: an input tensor with shape [n, d] Returns: y: an output tensor with shape [n, d] """ w = self.weight # a weight tensor with shape [d, k] x_norm = self.norm(x) # Atrick for implementing Straight−Through−Estimator (STE) using detach() x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach() w_quant = w + (weight_quant(w) - w).detach() y = F.linear(x_quant, w_quant) return y class OLMoBlock(nn.Module): """ A base class for transformer block implementations. """ def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache): super().__init__() self.layer_id = layer_id self.config = config self.hidden_size = ( config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model ) self.__cache = cache assert config.d_model % config.n_heads == 0 self._activation_checkpoint_fn = None Linear = BitLinear158 if config.ternary else nn.Linear # Dropout. self.dropout = Dropout(config.residual_dropout) # Layer norms. self.k_norm: Optional[LayerNormBase] = None self.q_norm: Optional[LayerNormBase] = None if config.attention_layer_norm: self.k_norm = LayerNormBase.build( config, size=config.d_model // config.n_heads if config.multi_query_attention else None, elementwise_affine=config.attention_layer_norm_with_affine, ) self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine) # Make sure QKV clip coefficient is positive, otherwise it's not well-defined. if config.clip_qkv is not None: assert config.clip_qkv > 0 # Activation function. self.act = Activation.build(config) assert (self.act.output_multiplier * self.hidden_size) % 1 == 0 # Attention output projection. self.attn_out = Linear( config.d_model, config.d_model, bias=config.include_bias, device=config.init_device, config=config ) # Feed-forward output projection. self.ff_out = Linear( int(self.act.output_multiplier * self.hidden_size), config.d_model, bias=config.include_bias, device=config.init_device, config=config, ) self.ff_out._is_residual = True # type: ignore # Rotary embeddings. if self.config.rope: self.rotary_emb = RotaryEmbedding(config, self.__cache) def reset_parameters(self): if self.k_norm is not None: self.k_norm.reset_parameters() if self.q_norm is not None: self.q_norm.reset_parameters() init_weights( self.config, self.attn_out, d=self.config.d_model, layer_id=self.layer_id, type_of_module=ModuleType.out_module, ) init_weights( self.config, self.ff_out, d=self.ff_out.in_features, layer_id=self.layer_id, type_of_module=ModuleType.out_module, ) def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): if strategy == ActivationCheckpointingStrategy.fine_grained: self._activation_checkpoint_fn = activation_checkpoint_function(self.config) else: self._activation_checkpoint_fn = None @classmethod def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor: target_dtype = input_dtype # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function # `is_autocast_cpu_enabled()` for CPU autocast. # See https://github.com/pytorch/pytorch/issues/110966. if bias.device.type == "cuda" and torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled(): target_dtype = torch.get_autocast_cpu_dtype() if bias.dtype != target_dtype: bias = bias.to(target_dtype) ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False) return bias def _scaled_dot_product_attention( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, dropout_p: float = 0.0, is_causal: bool = False, ) -> torch.Tensor: """ Computes scaled dot product attention on query, key and value tensors, using an optional attention mask if passed, and applying dropout if a probability greater than 0.0 is specified. This method is based on PyTorch's `scaled_dot_product_attention`. """ return F.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, ) def attention( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_bias: Optional[torch.Tensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: B, T, C = q.size() # batch size, sequence length, d_model dtype = k.dtype # Optionally apply layer norm to keys and queries. if self.q_norm is not None and self.k_norm is not None: q = self.q_norm(q).to(dtype=dtype) k = self.k_norm(k).to(dtype=dtype) # Move head forward to be next to the batch dim. # shape: (B, nh, T, hs) q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2) if self.config.multi_query_attention: # shape: (B, 1, T, hs) k = k.view(B, T, 1, C // self.config.n_heads).transpose(1, 2) # shape: (B, 1, T, hs) v = v.view(B, T, 1, C // self.config.n_heads).transpose(1, 2) else: # shape: (B, nh, T, hs) k = k.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2) # shape: (B, nh, T, hs) v = v.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2) if layer_past is not None: past_key, past_value = layer_past k = torch.cat((past_key, k), dim=-2) v = torch.cat((past_value, v), dim=-2) present = (k, v) if use_cache else None query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None if self.config.rope: # Apply rotary embeddings. q, k = self.rotary_emb(q, k) if attention_bias is not None: # Resize and cast attention bias. # The current dtype of the attention bias might not match the dtype that the SDP attn function will # run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding # as down-casting the attention bias to the autocast precision will result in -infs, which will # cause the SDP attn function to produce NaNs. attention_bias = self._cast_attn_bias( attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype ) # Get the attention scores. # shape: (B, nh, T, hs) att = self._scaled_dot_product_attention( q, k, v, attn_mask=attention_bias, dropout_p=0.0 if not self.training else self.config.attention_dropout, is_causal=attention_bias is None, ) # Re-assemble all head outputs side-by-side. att = att.transpose(1, 2).contiguous().view(B, T, C) # Apply output projection. return self.attn_out(att), present @abstractmethod def forward( self, x: torch.Tensor, attention_bias: Optional[torch.FloatTensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: raise NotImplementedError @classmethod def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> OLMoBlock: if config.block_type == BlockType.sequential: return OLMoSequentialBlock(layer_id, config, cache) elif config.block_type == BlockType.parallel: return OLMoParallelBlock(layer_id, config, cache) elif config.block_type == BlockType.llama: return OLMoLlamaBlock(layer_id, config, cache) else: raise NotImplementedError(f"Unknown block type: '{config.block_type}'") class OLMoSequentialBlock(OLMoBlock): """ This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` (plus another skip connection). """ def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache): super().__init__(layer_id, config, cache) # Layer norms. self.attn_norm = LayerNorm.build(config) self.ff_norm = LayerNorm.build(config) Linear = BitLinear158 if config.ternary else nn.Linear # Attention input projection. Projects x -> (q, k, v) if config.multi_query_attention: self.fused_dims = (config.d_model, config.d_model // config.n_heads, config.d_model // config.n_heads) else: self.fused_dims = (config.d_model, config.d_model, config.d_model) self.att_proj = Linear( config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device, config=config ) # Feed-forward input projection. self.ff_proj = Linear( config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device, config=config ) def reset_parameters(self): super().reset_parameters() self.attn_norm.reset_parameters() self.ff_norm.reset_parameters() # NOTE: the standard deviation for these weights does not depend on the layer. init_weights( self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module ) init_weights( self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module ) def forward( self, x: torch.Tensor, attention_bias: Optional[torch.Tensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: # Get query, key, value projections. # shape: # - for regular attn q, k, v: (batch_size, seq_len, d_model) # - for multi-query attn q: (batch_size, seq_len, d_model) # k, v: (batch_size, seq_len, d_model // n_heads) if self._activation_checkpoint_fn is not None: qkv = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x)) else: qkv = self.att_proj(self.attn_norm(x)) if self.config.clip_qkv is not None: qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) q, k, v = qkv.split(self.fused_dims, dim=-1) # Get attention scores. if self._activation_checkpoint_fn is not None: att, cache = self._activation_checkpoint_fn( # type: ignore self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache ) else: att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache) # Add attention scores. # shape: (B, T, C) x = x + self.dropout(att) # Add feed-forward projection. # shape: (batch_size, seq_len, d_model) og_x = x if self._activation_checkpoint_fn is not None: x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore else: x = self.ff_norm(x) x = self.ff_proj(x) if self._activation_checkpoint_fn is not None: x = self._activation_checkpoint_fn(self.act, x) # type: ignore else: x = self.act(x) x = self.ff_out(x) x = self.dropout(x) x = og_x + x return x, cache class OLMoParallelBlock(OLMoBlock): """ This is a transformer block where the output is computed as ``MLP(LN(x)) + Attention(LN(x))`` as in the PaLM architecture, as opposed to the typical ``MLP(LN(x + Attention(LN(x))))`` as in :class:`OLMoSequentialBlock` (ignoring some skip connections). The decoupling of the MLP and Attention functions allow us to fuse the separate input projections into a single linear layer to increase throughput. In this configuration it's also straight-forward to fuse the output projections, but we found that didn't help. """ def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache): super().__init__(layer_id, config, cache) self.norm = LayerNorm.build(config) Linear = BitLinear158 if config.ternary else nn.Linear # Fused attention and feed-forward projection. # NOTE: we could also fuse the attention and feed-forward output projections but we # found that didn't help, possibly because of the overhead of joining the `att` and # `ff` activations together. See https://github.com/allenai/LLM/pull/79 for details. if config.multi_query_attention: self.fused_dims = ( config.d_model, config.d_model // config.n_heads, config.d_model // config.n_heads, self.hidden_size, ) else: self.fused_dims = (config.d_model, config.d_model, config.d_model, self.hidden_size) self.fused_attn_ff_proj = Linear( config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device, config=config ) def reset_parameters(self): super().reset_parameters() self.norm.reset_parameters() # NOTE: the standard deviation for these weights does not depend on the layer. init_weights( self.config, self.fused_attn_ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module, ) def forward( self, x: torch.Tensor, attention_bias: Optional[torch.Tensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: # Get query, key, value, and feed-forward projections. # shape of q, k, v: # - for regular attn q, k, v: (batch_size, seq_len, d_model) # - for multi-query attn q: (batch_size, seq_len, d_model) # k, v: (batch_size, seq_len, d_model // n_heads) # shape of ff: (batch_size, seq_len, hidden_size) if self._activation_checkpoint_fn is not None: q, k, v, ff = self.fused_attn_ff_proj(self._activation_checkpoint_fn(self.norm, x)).split( self.fused_dims, dim=-1 ) else: q, k, v, ff = self.fused_attn_ff_proj(self.norm(x)).split(self.fused_dims, dim=-1) if self.config.clip_qkv is not None: q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) # Get attention scores. # shape: (B, T, C) if self._activation_checkpoint_fn is not None: att, cache = self._activation_checkpoint_fn( # type: ignore self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache ) else: att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache) # Apply output projections (and activation function) and sum the results. # We keep these projections separate because we found that we got better throughput this # way compared to fusing them. if self._activation_checkpoint_fn is not None: return ( x + self.dropout(self.ff_out(self._activation_checkpoint_fn(self.act, ff))) + self.dropout(att), cache, ) else: return ( x + self.dropout(self.ff_out(self.act(ff))) + self.dropout(att), cache, ) class OLMoLlamaBlock(OLMoBlock): """ This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` (plus another skip connection). This block is similar to `OLMoSequentialBlock` but some operations have slightly different implementations to imitate the behavior of Llama. """ def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache): super().__init__(layer_id, config, cache) # Layer norms. self.attn_norm = LayerNorm.build(config) self.ff_norm = LayerNorm.build(config) self.__cache = cache Linear = BitLinear158 if config.ternary else nn.Linear # Attention input projection. Projects x -> (q, k, v) if config.multi_query_attention: q_proj_out_dim = config.d_model k_proj_out_dim = config.d_model // config.n_heads v_proj_out_dim = config.d_model // config.n_heads else: q_proj_out_dim = config.d_model k_proj_out_dim = config.d_model v_proj_out_dim = config.d_model self.q_proj = Linear( config.d_model, q_proj_out_dim, bias=config.include_bias, device=config.init_device, config=config ) self.k_proj = Linear( config.d_model, k_proj_out_dim, bias=config.include_bias, device=config.init_device, config=config ) self.v_proj = Linear( config.d_model, v_proj_out_dim, bias=config.include_bias, device=config.init_device, config=config ) # Feed-forward input projection. self.ff_proj = Linear( config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device, config=config ) def reset_parameters(self): super().reset_parameters() if self.attn_norm: self.attn_norm.reset_parameters() self.ff_norm.reset_parameters() # NOTE: the standard deviation for these weights does not depend on the layer. init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None) init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None) init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None) init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None) def _scaled_dot_product_attention( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, dropout_p: float = 0.0, is_causal: bool = False, ) -> torch.Tensor: attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.size(-1)) if is_causal: assert attn_mask is None query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len] elif attn_mask is not None: attn_bias = attn_mask.to(q.dtype) else: attn_bias = torch.zeros_like(attn_weights) attn_weights += attn_bias attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(q.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout_p) return torch.matmul(attn_weights, v) def forward( self, x: torch.Tensor, attention_bias: Optional[torch.Tensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: # Get query, key, value projections. # shape: # - for regular attn q, k, v: (batch_size, seq_len, d_model) # - for multi-query attn q: (batch_size, seq_len, d_model) # k, v: (batch_size, seq_len, d_model // n_heads) x_normed = self.attn_norm(x) q = self.q_proj(x_normed) k = self.k_proj(x_normed) v = self.v_proj(x_normed) if self.config.clip_qkv is not None: q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) # Get attention scores. att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache) # Add attention scores. # shape: (B, T, C) x = x + self.dropout(att) # Add feed-forward projection. # shape: (batch_size, seq_len, d_model) og_x = x if self._activation_checkpoint_fn is not None: x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore else: x = self.ff_norm(x) x = self.ff_proj(x) if self._activation_checkpoint_fn is not None: x = self._activation_checkpoint_fn(self.act, x) # type: ignore else: x = self.act(x) x = self.ff_out(x) x = self.dropout(x) x = og_x + x return x, cache class OLMoOutput(NamedTuple): logits: torch.FloatTensor """ A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities for the next token *before* normalization via (log) softmax. """ attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] """ Attention keys and values from each block. """ hidden_states: Optional[Tuple[torch.Tensor]] """ Hidden states from each block. """ class OLMoGenerateOutput(NamedTuple): token_ids: torch.LongTensor """ The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`. These do *not* include the original input IDs. """ scores: torch.FloatTensor """ The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`. """ class OLMoBlockGroup(nn.ModuleList): def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None): super().__init__(modules) self.config = config self.layer_offset = layer_offset self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None self._activation_checkpoint_fn = activation_checkpoint_function(self.config) def forward( self, x: torch.Tensor, attention_bias: Optional[torch.FloatTensor] = None, layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]: attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None for block_idx, block in enumerate(self): layer_past = None if layers_past is None else layers_past[block_idx] block_idx += self.layer_offset if ( (self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer) or ( self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two and block_idx % 2 == 0 ) or ( self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three and block_idx % 3 == 0 ) or ( self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four and block_idx % 4 == 0 ) ): # shape: (batch_size, seq_len, d_model) x, cache = self._activation_checkpoint_fn( # type: ignore block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache ) else: # shape: (batch_size, seq_len, d_model) x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache) if attn_key_values is not None: assert cache is not None attn_key_values.append(cache) return x, attn_key_values def reset_parameters(self): for block in self: block.reset_parameters() def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): self.activation_checkpointing_strategy = strategy for block in self: block.set_activation_checkpointing(strategy) class OLMo(nn.Module): def __init__(self, config: ModelConfig, init_params: bool = True): super().__init__() self.config = config self.__cache = BufferCache() # Validate config. if self.config.alibi and self.config.flash_attention: raise OLMoConfigurationError("ALiBi is currently not supported with FlashAttention") if self.config.alibi and self.config.rope: raise OLMoConfigurationError("ALiBi and RoPE are mutually exclusive") if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size: if self.config.embedding_size < self.config.vocab_size: raise OLMoConfigurationError("embedding size should be at least as big as vocab size") elif self.config.embedding_size % 128 != 0: import warnings warnings.warn( "Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning ) self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config) if not ( 0 < self.config.block_group_size <= self.config.n_layers and self.config.n_layers % self.config.block_group_size == 0 ): raise OLMoConfigurationError("n layers must be divisible by block group size") torch.backends.cuda.enable_flash_sdp(self.config.flash_attention) torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it self.transformer = nn.ModuleDict( dict( wte=nn.Embedding( config.embedding_size or config.vocab_size, config.d_model, device=config.init_device ), emb_drop=Dropout(config.embedding_dropout), ln_f=LayerNorm.build(config), ) ) blocks = [OLMoBlock.build(i, config, self.__cache) for i in range(config.n_layers)] if self.config.block_group_size > 1: block_groups = [ OLMoBlockGroup(config, i, blocks[i : i + config.block_group_size]) for i in range(0, config.n_layers, config.block_group_size) ] self.transformer.update({"block_groups": nn.ModuleList(block_groups)}) else: self.transformer.update({"blocks": nn.ModuleList(blocks)}) if not (self.config.alibi or self.config.rope): self.transformer.update( {"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)} ) if not config.weight_tying: self.transformer.update( { "ff_out": nn.Linear( config.d_model, config.embedding_size or config.vocab_size, bias=config.include_bias, device=config.init_device, ) } ) # When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights. if init_params and self.config.init_device != "meta": self.reset_parameters() self.__num_fwd_flops: Optional[int] = None # Warm up cache. if self.config.alibi: get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config)) self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config)) def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]): self.activation_checkpointing_strategy = strategy if self.config.block_group_size != 1: for block_group in self.transformer.block_groups: block_group.set_activation_checkpointing(strategy) else: for block in self.transformer.blocks: block.set_activation_checkpointing(strategy) @property def device(self) -> torch.device: device: torch.device = self.transformer.wte.weight.device # type: ignore if device.type == "meta": return _non_meta_init_device(self.config) else: return device def reset_parameters(self): log.info("Initializing model parameters...") # Top-level embeddings / linear layers. init_weights( self.config, self.transformer.wte, # type: ignore std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0, type_of_module=ModuleType.emb, ) if hasattr(self.transformer, "wpe"): init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb) # type: ignore # Top-level layer norm. self.transformer.ln_f.reset_parameters() # type: ignore # Output weights. if hasattr(self.transformer, "ff_out"): init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out) # type: ignore # Let the blocks handle themselves. if self.config.block_group_size == 1: for block in self.transformer.blocks: block.reset_parameters() else: for block_group in self.transformer.block_groups: block_group.reset_parameters() def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor: if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[ -1 ] >= seq_len: if alibi_bias.device != device: alibi_bias = alibi_bias.to(device) self.__cache["alibi_attention_bias"] = alibi_bias return alibi_bias with torch.autocast(device.type, enabled=False): alibi_bias = alibi_attention_bias(seq_len, self.config, device) self.__cache["alibi_attention_bias"] = alibi_bias return alibi_bias def forward( self, input_ids: torch.LongTensor, inputs_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, attention_bias: Optional[torch.Tensor] = None, past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: bool = False, last_logits_only: bool = False, output_hidden_states: Optional[bool] = None, ) -> OLMoOutput: """ :param input_ids: A tensor of shape `(batch_size, seq_len)`. :param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input embeddings. When provided, it is treated as the output of the input embedding layer. :param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates which input IDs are masked. A `1` value in the mask means that the corresponding input ID should *not* be ignored. A `0` means that the corresponding input ID is masked. This has the same meaning as the `attention_mask` in HuggingFace's `transformers` library. :param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`, `(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used to introduce causal or other biases. If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]` indicates that the i-th element in the sequence is allowed to attend to the j-th element in the sequence. If the tensor is a float tensor, it will just be added to the attention scores before the softmax. The default is causal, which corresponds to a lower-diagonal byte matrix of ones. :param past_key_values: Pre-computed keys and values for each attention block. Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. :param use_cache: If `True`, return key and value tensors for each block. :param last_logits_only: If `True`, only compute the logits for the last token of each sequence. This can speed up decoding when you only care about the next token. """ output_hidden_states = output_hidden_states if output_hidden_states is not None else False if past_key_values: assert len(past_key_values) == self.config.n_layers batch_size, seq_len = input_ids.size() if inputs_embeds is None else inputs_embeds.size()[:2] if past_key_values is None: past_length = 0 else: past_length = past_key_values[0][0].size(-2) # Get embeddings of input. # shape: (batch_size, seq_len, d_model) x = self.transformer.wte(input_ids) if inputs_embeds is None else inputs_embeds # type: ignore if not (self.config.alibi or self.config.rope): # Get positional embeddings. # shape: (1, seq_len) pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0) # shape: (1, seq_len, d_model) pos_emb = self.transformer.wpe(pos) # type: ignore x = pos_emb + x # Add input + positional embeddings and apply dropout. # shape: (batch_size, seq_len, d_model) x = self.transformer.emb_drop(x) # type: ignore # Transform the attention mask into what the blocks expect. if attention_mask is not None: # shape: (batch_size, 1, 1, seq_len) attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :] attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min # Merge attention mask with attention bias. if ( attention_bias is not None or attention_mask is not None or self.config.alibi # NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly # with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute # scores correctly. or past_key_values is not None ): if attention_bias is None and self.config.alibi: attention_bias = get_causal_attention_bias( self.__cache, past_length + seq_len, x.device ) + self.get_alibi_attention_bias(past_length + seq_len, x.device) elif attention_bias is None: attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device) elif attention_bias.dtype in (torch.int8, torch.bool): attention_bias = attention_bias.to(dtype=torch.float) attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min) # Transform to the right shape and data type. mask_len = seq_len if attention_mask is not None: mask_len = attention_mask.shape[-1] elif past_key_values is not None: mask_len = past_key_values[0][0].shape[-2] + seq_len attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float) # Add in the masking bias. if attention_mask is not None: attention_bias = attention_bias + attention_mask # Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf. # `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead # it can produce NaNs. ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False) attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None # decoder layers all_hidden_states = [] # Apply blocks one-by-one. if self.config.block_group_size == 1: for block_idx, block in enumerate(self.transformer.blocks): if output_hidden_states: # add hidden states all_hidden_states.append(x) layer_past = None if past_key_values is None else past_key_values[block_idx] if ( (self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer) or ( self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two and block_idx % 2 == 0 ) or ( self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three and block_idx % 3 == 0 ) or ( self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four and block_idx % 4 == 0 ) ): # shape: (batch_size, seq_len, d_model) x, cache = self._activation_checkpoint_fn( block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache ) else: # shape: (batch_size, seq_len, d_model) x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache) if attn_key_values is not None: assert cache is not None attn_key_values.append(cache) else: for group_idx, block_group in enumerate(self.transformer.block_groups): if output_hidden_states: # add hidden states all_hidden_states.append(x) layers_past = ( None if past_key_values is None else past_key_values[ group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size ] ) x, cache = block_group( x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache ) if attn_key_values is not None: assert cache is not None attn_key_values.extend(cache) if last_logits_only: # shape: (batch_size, 1, d_model) x = x[:, -1, :].unsqueeze(1) # Apply final layer norm. # shape: (batch_size, seq_len or 1, d_model) x = self.transformer.ln_f(x) # type: ignore if output_hidden_states: # add final hidden state post-final-layernorm, following HuggingFace's convention all_hidden_states.append(x) # Get logits. # shape: (batch_size, seq_len or 1, vocab_size) if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore else: logits = self.transformer.ff_out(x) # type: ignore if self.config.scale_logits: logits.mul_(1 / math.sqrt(self.config.d_model)) return BaseModelOutputWithPast( last_hidden_state=x, past_key_values=tuple(attn_key_values) if attn_key_values is not None else None, hidden_states=tuple(all_hidden_states) if output_hidden_states else None, ) def get_fsdp_wrap_policy(self, wrap_strategy: Optional[FSDPWrapStrategy] = None): if wrap_strategy is None: return None # The 'recurse' mode for the wrap function does not behave like you'd expect. # Even if we return False, it may still recurse because PyTorch does what it wants, # not what you want. This causes issues when, for example, we want to wrap 'ff_out' (a linear layer) # but not other linear layers within a block. # So we have to explicitly tell PyTorch which linear layers to wrap, and we also just # return True in 'recurse' mode for simplicity. size_based_module_to_wrap = {self.transformer.wte} if hasattr(self.transformer, "ff_out"): size_based_module_to_wrap.add(self.transformer.ff_out) if wrap_strategy == FSDPWrapStrategy.by_block: def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0): del nonwrapped_numel wrap = isinstance(module, OLMoBlock) if recurse: return True else: return wrap return fsdp_wrap_fn elif wrap_strategy == FSDPWrapStrategy.by_block_and_size: def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0): del nonwrapped_numel wrap = isinstance(module, (OLMoBlock,)) or module in size_based_module_to_wrap if recurse: return True else: return wrap return fsdp_wrap_fn elif wrap_strategy == FSDPWrapStrategy.by_block_group: if self.config.block_group_size <= 1: raise OLMoConfigurationError( "'by_block_group' FSDP wrapping strategy requires block group size greater than 1" ) def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0): del nonwrapped_numel wrap = isinstance(module, OLMoBlockGroup) if recurse: return True else: return wrap return fsdp_wrap_fn elif wrap_strategy == FSDPWrapStrategy.by_block_group_and_size: if self.config.block_group_size <= 1: raise OLMoConfigurationError( "'by_block_group_and_size' FSDP wrapping strategy requires block group size greater than 1" ) def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0): del nonwrapped_numel wrap = isinstance(module, (OLMoBlockGroup,)) or module in size_based_module_to_wrap if recurse: return True else: return wrap return fsdp_wrap_fn elif wrap_strategy == FSDPWrapStrategy.size_based: from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy return size_based_auto_wrap_policy elif wrap_strategy in { FSDPWrapStrategy.one_in_two, FSDPWrapStrategy.one_in_three, FSDPWrapStrategy.one_in_four, FSDPWrapStrategy.one_in_five, }: c = { FSDPWrapStrategy.one_in_two: 2, FSDPWrapStrategy.one_in_three: 3, FSDPWrapStrategy.one_in_four: 4, FSDPWrapStrategy.one_in_five: 5, }[wrap_strategy] def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0): del nonwrapped_numel wrap = isinstance(module, OLMoBlock) and module.layer_id % c == 0 if recurse: return True else: return wrap return fsdp_wrap_fn else: raise NotImplementedError(wrap_strategy) def num_params(self, include_embedding: bool = True) -> int: """ Get the total number of parameters. """ params = (np for np in self.named_parameters()) if not include_embedding: params = filter( # type: ignore lambda np: ".wte." not in np[0] and ".wpe." not in np[0], params, ) return sum(p.numel() for _, p in params) @property def num_fwd_flops(self): if self.__num_fwd_flops: return self.__num_fwd_flops n_params = self.num_params() # the number of parameters is approximately the number of multiply-accumulates (MAC) in the network # each MAC has 2 FLOPs - we multiply by 2 ie 2 * n_param # this gets us FLOPs / token params_flops_per_token = 2 * n_params params_flops_per_seq = params_flops_per_token * self.config.max_sequence_length # there are 2 FLOPS per mac; there is A=Q*K^T and out=A*V ops (ie mult by 2) attn_flops_per_seq = ( self.config.n_layers * 2 * 2 * (self.config.d_model * (self.config.max_sequence_length**2)) ) self.__num_fwd_flops = params_flops_per_seq + attn_flops_per_seq return self.__num_fwd_flops def generate( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, attention_bias: Optional[torch.Tensor] = None, max_steps: int = 10, beam_size: int = 1, per_node_beam_size: Optional[int] = None, sampler: Optional[Sampler] = None, min_steps: Optional[int] = None, final_sequence_scorer: Optional[FinalSequenceScorer] = None, constraints: Optional[List[Constraint]] = None, ) -> OLMoGenerateOutput: """ Generate token IDs using beam search. Note that by default ``beam_size`` is set to 1, which is greedy decoding. :param input_ids: A tensor of shape `(batch_size, seq_len)`. :param attention_mask: A optional tensor of shape `(batch_size, seq_len)`, the same as for the forward method. :param attention_bias: A tensor of shape `(batch_size, 1, seq_len + tokens_to_generate, seq_len + tokens_to_generate)`, the same as for the forward method except only one shape is excepted here. For an explanation of the other arguments, see :class:`BeamSearch`. """ beam_search = BeamSearch( self.config.eos_token_id, max_steps=max_steps, beam_size=beam_size, per_node_beam_size=per_node_beam_size, sampler=sampler, min_steps=min_steps, final_sequence_scorer=final_sequence_scorer, constraints=constraints, ) # Validate inputs. batch_size, seq_len = input_ids.shape if attention_mask is not None: assert attention_mask.shape == (batch_size, seq_len) if attention_bias is not None: assert len(attention_bias.shape) == 4 assert attention_bias.shape[:2] == (batch_size, 1) assert ( seq_len + beam_search.max_steps <= attention_bias.shape[2] == attention_bias.shape[3] <= self.config.max_sequence_length ) tokens_generated = 0 def flatten_past_key_values( past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], ) -> Dict[str, torch.Tensor]: out = {} for i, (key, value) in enumerate(past_key_values): out[f"past_key_{i}"] = key out[f"past_value_{i}"] = value return out def unflatten_past_key_values( past_key_values: Dict[str, torch.Tensor], ) -> List[Tuple[torch.Tensor, torch.Tensor]]: out = [] for i in range(self.config.n_layers): past_key = past_key_values[f"past_key_{i}"] past_value = past_key_values[f"past_value_{i}"] out.append((past_key, past_value)) return out def step( last_predictions: torch.Tensor, state: dict[str, torch.Tensor] ) -> tuple[torch.Tensor, dict[str, torch.Tensor]]: nonlocal tokens_generated attention_mask = state.get("attention_mask") attention_bias = state.get("attention_bias") if tokens_generated > 0: past_key_values = unflatten_past_key_values(state) input_ids = last_predictions.unsqueeze(1) if attention_mask is not None: group_size = input_ids.shape[0] attention_mask = torch.cat((attention_mask, attention_mask.new_ones((group_size, 1))), dim=-1) else: past_key_values = None input_ids = state["input_ids"] tokens_generated += 1 # Run forward pass of model to get logits, then normalize to get log probs. output = self( input_ids, attention_mask=attention_mask, attention_bias=attention_bias, past_key_values=past_key_values, use_cache=True, last_logits_only=True, ) log_probs = F.log_softmax(output.logits[:, -1, :], dim=-1) # Create new state. state = flatten_past_key_values(output.attn_key_values) if attention_mask is not None: state["attention_mask"] = attention_mask if attention_bias is not None: state["attention_bias"] = attention_bias return log_probs, state initial_preds = input_ids.new_zeros((batch_size,)) # This is arbitrary, we won't use this. state: dict[str, torch.Tensor] = {"input_ids": input_ids} if attention_mask is not None: state["attention_mask"] = attention_mask if attention_bias is not None: state["attention_bias"] = attention_bias with torch.no_grad(): token_ids, scores = beam_search.search(initial_preds, state, step) return OLMoGenerateOutput( token_ids=token_ids, # type: ignore[arg-type] scores=scores, # type: ignore[arg-type] ) @classmethod def from_checkpoint( cls, checkpoint_dir: PathOrStr, device: str = "cpu", checkpoint_type: Optional[CheckpointType] = None ) -> OLMo: """ Load an OLMo model from a checkpoint. """ from .util import resource_path # Guess checkpoint type. if checkpoint_type is None: try: if resource_path(checkpoint_dir, "model.pt").is_file(): checkpoint_type = CheckpointType.unsharded else: checkpoint_type = CheckpointType.sharded except FileNotFoundError: checkpoint_type = CheckpointType.sharded # Load config. config_path = resource_path(checkpoint_dir, "config.yaml") model_config = ModelConfig.load(config_path, key="model", validate_paths=False) if checkpoint_type == CheckpointType.unsharded: # Initialize model (always on CPU to start with so we don't run out of GPU memory). model_config.init_device = "cpu" model = OLMo(model_config) # Load state dict directly to target device. state_dict_path = resource_path(checkpoint_dir, "model.pt") state_dict = torch.load(state_dict_path, map_location="cpu") model.load_state_dict(model._make_state_dict_compatible(state_dict)[0]) model = model.to(torch.device(device)) else: from .checkpoint import load_model_state # Initialize model on target device. In this case the state dict is loaded in-place # so it's not necessary to start on CPU if the target device is a GPU. model_config.init_device = device model = OLMo(model_config) # Load state dict in place. load_model_state(checkpoint_dir, model) return model.eval() def _make_state_dict_compatible( self, state_dict: Dict[str, torch.Tensor] ) -> Tuple[Dict[str, torch.Tensor], Dict[str, Set[str]]]: """ Handles some cases where the state dict is valid yet may need to be transformed in order to be loaded. This modifies the state dict in-place and also returns it, along with a mapping of original key names to new key names in cases where the keys were simply renamed. That mapping can be used to make a corresponding optimizer state dict compatible as well. """ import re from fnmatch import fnmatch new_keys_to_og_keys: Dict[str, str] = {} # Remove "_fsdp_wrapped_module." prefix from all keys. We don't want this prefix when the model is # not wrapped in FSDP. And when the model is wrapped in FSDP, loading this state dict will still work # fine without the prefixes. This also simplifies the other steps below. for key in list(state_dict.keys()): state_dict[(new_key := key.replace("_fsdp_wrapped_module.", ""))] = state_dict.pop(key) new_keys_to_og_keys[new_key] = key # For backwards compatibility prior to fixing https://github.com/allenai/LLM/issues/222 if self.config.block_type == BlockType.sequential: for key in list(state_dict.keys()): if fnmatch(key, "transformer.*.norm.weight"): tensor = state_dict.pop(key) state_dict[(new_key := key.replace("norm.weight", "attn_norm.weight"))] = tensor new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key] state_dict[(new_key := key.replace("norm.weight", "ff_norm.weight"))] = tensor.clone() new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key] del new_keys_to_og_keys[key] elif fnmatch(key, "transformer.*.norm.bias"): tensor = state_dict.pop(key) state_dict[(new_key := key.replace("norm.bias", "attn_norm.bias"))] = tensor new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key] state_dict[(new_key := key.replace("norm.bias", "ff_norm.bias"))] = tensor.clone() new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key] del new_keys_to_og_keys[key] # For loading a state dict that was saved with a different `block_group_size`. if "transformer.block_groups.0.0.attn_out.weight" in state_dict.keys(): state_dict_block_group_size = len( [k for k in state_dict.keys() if fnmatch(k, "transformer.block_groups.0.*.attn_out.weight")] ) else: state_dict_block_group_size = 1 if self.config.block_group_size != state_dict_block_group_size: log.info( f"Regrouping state dict blocks from group size {state_dict_block_group_size} to " f"group size {self.config.block_group_size}" ) # For simplicity we're first going to flatten out the block groups in the state dict (if necessary) # and then (re-)group them into the right block sizes. if state_dict_block_group_size > 1: for key in list(state_dict.keys()): if (m := re.match(r"transformer.block_groups\.(\d+)\.(\d+)\..*", key)) is not None: group_idx, group_block_idx = int(m.group(1)), int(m.group(2)) block_idx = (group_idx * state_dict_block_group_size) + group_block_idx state_dict[ ( new_key := key.replace( f"block_groups.{group_idx}.{group_block_idx}.", f"blocks.{block_idx}." ) ) ] = state_dict.pop(key) new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key) if self.config.block_group_size > 1: # Group the state dict blocks into the right block size. for key in list(state_dict.keys()): if (m := re.match(r"transformer.blocks\.(\d+)\..*", key)) is not None: block_idx = int(m.group(1)) group_idx, group_block_idx = ( block_idx // self.config.block_group_size, block_idx % self.config.block_group_size, ) state_dict[ ( new_key := key.replace( f"blocks.{block_idx}.", f"block_groups.{group_idx}.{group_block_idx}." ) ) ] = state_dict.pop(key) new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key) og_keys_to_new: Dict[str, Set[str]] = defaultdict(set) for new_key, og_key in new_keys_to_og_keys.items(): og_keys_to_new[og_key].add(new_key) return state_dict, og_keys_to_new