import tensorflow as tf from tensorflow.keras.layers import Dense,LayerNormalization,Dropout,Identity,Activation from tensorflow.keras import Model def pair(t): return t if isinstance(t, tuple) else (t, t) class FeedForward: def __init__(self, dim, hidden_dim, drop_rate = 0.): self.net = tf.keras.Sequential() self.net.add(LayerNormalization()) self.net.add(Dense(hidden_dim)) self.net.add(Activation('gelu')) self.net.add(Dropout(drop_rate)) self.net.add(Dense(dim)) self.net.add(Dropout(drop_rate)) def __call__(self, x): return self.net(x) class Attention: def __init__(self, dim, heads = 8, dim_head = 64, drop_rate = 0.): inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = LayerNormalization() self.attend = tf.nn.softmax self.dropout = Dropout(drop_rate) self.to_qkv = Dense(inner_dim * 3, use_bias = False) if project_out: self.to_out = tf.keras.Sequential() self.to_out.add(Dense(dim)) self.to_out.add(Dropout(drop_rate)) else: self.to_out = Identity() def __call__(self, x): x = self.norm(x) qkv = self.to_qkv(x) q, k, v = tf.split(qkv, 3, axis=-1) b = q.shape[0] h = self.heads n = q.shape[1] d = q.shape[2] // self.heads q = tf.reshape(q, (b, h, n, d)) k = tf.reshape(k, (b, h, n, d)) v = tf.reshape(v, (b, h, n, d)) dots = tf.matmul(q, tf.transpose(k, [0, 1, 3, 2])) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = tf.matmul(attn, v) out = tf.transpose(out, [0, 1, 3, 2]) out = tf.reshape(out, shape=[-1, n, h*d]) return self.to_out(out) class Transformer: def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): self.norm = LayerNormalization() self.layers = [] for _ in range(depth): self.layers.append([Attention(dim, heads = heads, dim_head = dim_head, drop_rate = dropout), FeedForward(dim, mlp_dim, drop_rate = dropout)]) def __call__(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class ViT(Model): def __init__(self, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, drop_rate = 0., emb_dropout = 0.): super(ViT, self).__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) self.p1, self.p2 = patch_height, patch_width self.dim = dim assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = tf.keras.Sequential() self.to_patch_embedding.add(LayerNormalization()) self.to_patch_embedding.add(Dense(dim)) self.to_patch_embedding.add(LayerNormalization()) self.pos_embedding = tf.Variable(tf.random.normal((1, num_patches + 1, dim))) self.cls_token = tf.Variable(tf.random.normal(((1, 1, dim)))) self.dropout = Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, drop_rate) self.pool = pool self.to_latent = Identity() self.mlp_head = Dense(num_classes) def __call__(self, data): b = data.shape[0] h = data.shape[1] // self.p1 w = data.shape[2] // self.p2 c = data.shape[3] data = tf.reshape(data, (b, h * w, self.p1 * self.p2 * c)) x = self.to_patch_embedding(data) b, n, _ = x.shape cls_tokens = tf.tile(self.cls_token, multiples=[b, 1, 1]) x = tf.concat([cls_tokens, x], axis=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = tf.reduce_mean(x, axis = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return tf.nn.softmax(self.mlp_head(x))