--- license: creativeml-openrail-m language: - en thumbnail: "https://huggingface.co/Norod78/Norod78/sd2-cartoon-blip/raw/main/example/Norod78/sd2-cartoon-blip-sample_tile-0.jpg" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image datasets: - Norod78/cartoon-blip-captions inference: true --- # Cartoon diffusion v2.0 *Stable Diffusion v2.0 fine tuned on images from various cartoon shows If you want more details on how to generate your own blip cpationed dataset see this [colab](https://colab.research.google.com/gist/Norod/ee6ee3c4bf11c2d2be531d728ec30824/buildimagedatasetwithblipcaptionsanduploadtohf.ipynb) Training was done using a slightly modified version of Hugging-Face's text to image training [example script](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) ## About Put in a text prompt and generate cartoony images ## AUTOMATIC1111 webui checkpoint The [main](https://huggingface.co/Norod78/Norod78/sd2-cartoon-blip/tree/main) folder contains a .ckpt and a .yaml file to be put in [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) "stable-diffusion-webui/models/Stable-diffusion" folder and used to generate images ## Sample code ```py from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler import torch # this will substitute the default PNDM scheduler for K-LMS lms = LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) guidance_scale=8.5 steps=50 cartoon_model_path = "Norod78/sd2-cartoon-blip" cartoon_pipe = StableDiffusionPipeline.from_pretrained(cartoon_model_path, scheduler=lms, torch_dtype=torch.float16) cartoon_pipe.to("cuda") def generate(prompt, file_prefix ,samples, seed=42): torch.manual_seed(seed) prompt += ", Very detailed, clean, high quality, sharp image" cartoon_images = cartoon_pipe([prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale)["images"] for idx, image in enumerate(cartoon_images): image.save(f"{file_prefix}-{idx}-{seed}-sd2-cartoon-blip.jpg") generate("An oil on canvas portrait of Snoop Dogg, Mark Ryden", "01_SnoopDog", 2, 777) generate("A flemish baroque painting of Kermit from the muppet show", "02_KermitFlemishBaroque", 2, 42) generate("Gal Gadot in Avatar", "03_GalGadotAvatar", 2, 777) generate("Ninja turtles, Naoto Hattori", "04_TMNT", 2, 312) generate("An anime town", "05_AnimeTown", 2, 777) generate("Family guy taking selfies at the beach", "06_FamilyGuy", 2, 555) generate("Pikachu as Rick and morty, Eric Wallis", "07_PikachuRnM", 2, 777) generate("Pikachu as Spongebob, Eric Wallis", "08_PikachuSpongeBob", 2, 42) generate("An oil painting of Miss. Piggy from the muppets as the Mona Lisa", "09_MsPiggyMonaLisa", 2, 42) generate("Rick Sanchez in star wars, Dave Dorman", "10_RickStarWars", 2, 42) generate("An paiting of Southpark with rainbow", "11_Southpark", 2, 777) generate("An oil painting of Phineas and Pherb hamering on a new machine, Eric Wallis", "12_PhineasPherb", 2, 777) generate("Bender, Saturno Butto", "13_Bender", 2, 777) generate("A psychedelic image of Bojack Horseman", "14_Bojack", 2, 777) generate("A movie poster for Gravity Falls Cthulhu stories", "15_GravityFalls", 2, 777) generate("A vibrant oil painting portrait of She-Ra", "16_Shira", 2, 512) # ``` ![Images generated by this sample code](https://huggingface.co/Norod78/Norod78/sd2-cartoon-blip/resolve/main/example/Norod78/sd2-cartoon-blip-sample_tile-0.jpg) ![Images generated by this sample code](https://huggingface.co/Norod78/Norod78/sd2-cartoon-blip/resolve/main/example/Norod78/sd2-cartoon-blip-sample_tile-1.jpg) ## Dataset and Training Finetuned for 25,000 iterations upon [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) on [BLIP captioned cartoon images](https://huggingface.co/datasets/Norod78/cartoon-blip-captions) using 1xA5000 GPU on my home desktop computer Trained by [@Norod78](https://twitter.com/Norod78)