# Wav2vec2 German Model This model has been fine-tuned on the wav2vec-large-xlsr-53 with the German CommonVoice dataset. It achieves a 11.26 WER on the full test dataset. It was basically trained with the code provided by [Max Idahl](https://huggingface.co/maxidl/wav2vec2-large-xlsr-german) with small adjustments in data preprocessing and on training parameters. You can use it to transcribe your own files by the following code. Please note, that your input file must be *.wav, encoded in 16 kHz and be single channel. To convert an audio file using ffmpeg use: "ffmpeg -i input.wav -ar 16000 -ac 1 output.wav". The transcribe process is very memory consuming (around 10GB per 10 seconds). If the script ends with "Killed" it means the Python interpreter ran out of memory. In this case, try with a shorter audio file. ```python # !pip3 install transformers torch soundfile import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer # load pretrained model tokenizer = Wav2Vec2Tokenizer.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model = Wav2Vec2ForCTC.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") #load audio audio_input, _ = sf.read("/path/to/your/audio.wav") # transcribe input_values = tokenizer(audio_input, return_tensors="pt").input_values logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids)[0] print(str(transcription)) ``` To evaluate the model on the full CommonVoice test dataset, run this script: ```python import re import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "de", split="test") # use "test[:1%]" for 1% sample wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model = Wav2Vec2ForCTC.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=4) # batch_size=8 -> requires ~14.5GB GPU memory # Chunked version, see https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586/5: import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) print("Total (chunk_size=1000), WER: {:2f}".format(100 * chunked_wer(result["pred_strings"], result["sentence"], chunk_size=1000))) ``` Output: Total (chunk_size=1000), WER: 11.256522