---
license: apache-2.0
---
# Mistral-7B-code-16k-qlora
I'm excited to announce the release of a new model called Mistral-7B-code-16k-qlora. This small and fast model shows a lot of promise for supporting coding or acting as a copilot. I'm currently looking for people to help me test it out!
## Additional Information
This model was trained on 3x RTX 3090 in my homelab, using around 65kWh for approximately 23 cents, which is equivalent to around $15 for electricity.
## Quantised:
1. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-GPTQ
2. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-AWQ
3. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-GGUF
## Download by qBittorrent:
#### Torrent file: https://github.com/Nondzu/LlamaTor/blob/torrents/torrents/Nondzu_Mistral-7B-code-16k-qlora.torrent
## Dataset:
nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
## Prompt template: Alpaca
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
```
[](https://github.com/OpenAccess-AI-Collective/axolotl)
## eval plus
Human eval plus: https://github.com/evalplus/evalplus
```
Nondzu mistral-7b-code
Base
{'pass@1': 0.3353658536585366}
Base + Extra
{'pass@1': 0.2804878048780488}
```
to compare here is original Mistral model tested on the same machine
```
Mistral 7b
Base
{'pass@1': 0.2926829268292683}
Base + Extra
{'pass@1': 0.24390243902439024}
```
## Settings:
```
base_model: mistralai/Mistral-7B-Instruct-v0.1
base_model_config: mistralai/Mistral-7B-Instruct-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: nickrosh/Evol-Instruct-Code-80k-v1
type: oasst
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./Mistral-7B-Evol-Instruct-16k-test11
adapter: qlora
lora_model_dir:
# 16384 8192 4096 2048
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: mistral-code
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 8
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 20
save_steps:
debug:
# deepspeed:
deepspeed: deepspeed/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63729f35acef705233c87909/NyuqJFDkH00KGvuOwHIuG.png)
Check my other projects:
https://github.com/Nondzu/LlamaTor