--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9386094674556213 - name: Recall type: recall value: 0.9498502994011976 - name: F1 type: f1 value: 0.9441964285714285 - name: Accuracy type: accuracy value: 0.9562818336162988 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2039 - Precision: 0.9386 - Recall: 0.9499 - F1: 0.9442 - Accuracy: 0.9563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 1.0093 | 0.7425 | 0.7964 | 0.7685 | 0.7984 | | 1.3757 | 3.12 | 500 | 0.5393 | 0.8493 | 0.8735 | 0.8613 | 0.8816 | | 1.3757 | 4.69 | 750 | 0.3774 | 0.8857 | 0.9049 | 0.8952 | 0.9160 | | 0.3755 | 6.25 | 1000 | 0.2909 | 0.9153 | 0.9304 | 0.9228 | 0.9338 | | 0.3755 | 7.81 | 1250 | 0.2511 | 0.9174 | 0.9311 | 0.9242 | 0.9393 | | 0.1939 | 9.38 | 1500 | 0.2213 | 0.9385 | 0.9484 | 0.9434 | 0.9529 | | 0.1939 | 10.94 | 1750 | 0.2176 | 0.9383 | 0.9454 | 0.9418 | 0.9525 | | 0.1358 | 12.5 | 2000 | 0.2180 | 0.9314 | 0.9454 | 0.9383 | 0.9503 | | 0.1358 | 14.06 | 2250 | 0.2057 | 0.9357 | 0.9484 | 0.9420 | 0.9546 | | 0.1035 | 15.62 | 2500 | 0.2039 | 0.9386 | 0.9499 | 0.9442 | 0.9563 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.10.1 - Tokenizers 0.13.2