--- datasets: - "google/DOCCI" language: - en library_name: peft tags: - florence-2 - lora - adapter - image-captioning - peft model-index: - name: Florence-2-DOCCI-FT results: - task: type: image-to-text name: Image Captioning dataset: name: foundation-multimodal-models/DetailCaps-4870 type: other metrics: - type: meteor value: 0.267 - type: bleu value: 0.185 - type: cider value: 0.086 - type: capture value: 0.576 - type: rouge-l value: 0.287 --- # Florence-2 DOCCI-FT LoRA Adapter This repository contains a LoRA adapter trained on google/docci for the Florence-2-base-FT model. It's designed to enhance the model's captioning capabilities, providing more detailed captions. ## Usage To use this LoRA adapter, you'll need to load it along with the Florence-2-base model using the PEFT library. Here's an example of how to use it: ```python from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM from peft import PeftModel, PeftConfig import requests def caption(image): base_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True) processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True) prompt = "" adapter_name = "NikshepShetty/Florence-2-DOCCI-FT" model = PeftModel.from_pretrained(base_model, adapter_name, trust_remote_code=True) inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=False, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task="", image_size=(image.width, image.height)) print(parsed_answer) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) caption(image) ``` This code demonstrates how to: 1. Load the base Florence-2 model 2. Load the LoRA adapter 3. Process an image and generate a detailed caption Note: Make sure you have the required libraries installed: transformers, peft, einops, flash_attn, timm, Pillow, and requests. ## Evaluation results Our LoRA adapter shows improvements over the base Florence-2 model across all metrics for MORE_DETAILED_CAPTION tag for 1000 images on the foundation-multimodal-models/DetailCaps-4870 dataset: | Metric | Base Model | Adapted Model | Improvement | |---------|------------|---------------|-------------| | CAPTURE | 0.546 | 0.576 | +5.5% | | METEOR | 0.213 | 0.267 | +25.4% | | BLEU | 0.110 | 0.185 | +68.2% | | CIDEr | 0.031 | 0.086 | +177.4% | | ROUGE-L | 0.275 | 0.287 | +4.4% | These results demonstrate that our LoRA adapter enhances the image captioning capabilities of the Florence-2 base model, particularly in generating more detailed and accurate captions.