Upload 21 files
Browse files- G2P_lexicon/G2P.py +3 -2
- G2P_lexicon/SP.py +2 -2
- G2P_lexicon/__pycache__/G2P.cpython-311.pyc +0 -0
- G2P_lexicon/__pycache__/SP.cpython-311.pyc +0 -0
- G2P_lexicon/__pycache__/__init__.cpython-311.pyc +0 -0
- G2P_lexicon/__pycache__/config_models.cpython-311.pyc +0 -0
- G2P_lexicon/__pycache__/data_preparation.cpython-311.pyc +0 -0
- G2P_lexicon/__pycache__/sp_tokenizer.cpython-311.pyc +0 -0
- G2P_lexicon/__pycache__/transformer.cpython-311.pyc +0 -0
- G2P_lexicon/config_models.py +6 -4
- G2P_lexicon/data_preparation.py +54 -38
- G2P_lexicon/models/model_g2p.pt +3 -0
- G2P_lexicon/models/model_sp.pt +3 -0
- G2P_lexicon/my_tokenizer/bpe_256_cmu.json +530 -0
- G2P_lexicon/my_tokenizer/sp_dict.json +90 -0
- G2P_lexicon/sp_tokenizer.py +1 -1
- G2P_lexicon/transformer.py +12 -11
G2P_lexicon/G2P.py
CHANGED
@@ -74,8 +74,9 @@ class GraphemeToPhoneme:
|
|
74 |
return pred
|
75 |
|
76 |
|
77 |
-
dict_path = os.path.join(dirname, "my_tokenizer/
|
78 |
-
model_path = os.path.join(dirname, "models/
|
|
|
79 |
|
80 |
tokenizer_g2p = Tokenizer.from_file(dict_path)
|
81 |
g2p_model = TransformerBlock(config=config_g2p, tokenizer=tokenizer_g2p)
|
|
|
74 |
return pred
|
75 |
|
76 |
|
77 |
+
dict_path = os.path.join(dirname, "my_tokenizer/bpe_256_cmu.json")
|
78 |
+
model_path = os.path.join(dirname, "models/model_g2p.pt")
|
79 |
+
|
80 |
|
81 |
tokenizer_g2p = Tokenizer.from_file(dict_path)
|
82 |
g2p_model = TransformerBlock(config=config_g2p, tokenizer=tokenizer_g2p)
|
G2P_lexicon/SP.py
CHANGED
@@ -65,8 +65,8 @@ class Stress_Pred:
|
|
65 |
return pred
|
66 |
|
67 |
|
68 |
-
dict_path = os.path.join(dirname, "my_tokenizer\
|
69 |
-
model_path = os.path.join(dirname, "models\
|
70 |
|
71 |
tokenizer_sp = Tokenizer_sp(dict_path=dict_path)
|
72 |
|
|
|
65 |
return pred
|
66 |
|
67 |
|
68 |
+
dict_path = os.path.join(dirname, "my_tokenizer\sp_dict.json")
|
69 |
+
model_path = os.path.join(dirname, "models\model_sp.pt")
|
70 |
|
71 |
tokenizer_sp = Tokenizer_sp(dict_path=dict_path)
|
72 |
|
G2P_lexicon/__pycache__/G2P.cpython-311.pyc
CHANGED
Binary files a/G2P_lexicon/__pycache__/G2P.cpython-311.pyc and b/G2P_lexicon/__pycache__/G2P.cpython-311.pyc differ
|
|
G2P_lexicon/__pycache__/SP.cpython-311.pyc
CHANGED
Binary files a/G2P_lexicon/__pycache__/SP.cpython-311.pyc and b/G2P_lexicon/__pycache__/SP.cpython-311.pyc differ
|
|
G2P_lexicon/__pycache__/__init__.cpython-311.pyc
CHANGED
Binary files a/G2P_lexicon/__pycache__/__init__.cpython-311.pyc and b/G2P_lexicon/__pycache__/__init__.cpython-311.pyc differ
|
|
G2P_lexicon/__pycache__/config_models.cpython-311.pyc
CHANGED
Binary files a/G2P_lexicon/__pycache__/config_models.cpython-311.pyc and b/G2P_lexicon/__pycache__/config_models.cpython-311.pyc differ
|
|
G2P_lexicon/__pycache__/data_preparation.cpython-311.pyc
CHANGED
Binary files a/G2P_lexicon/__pycache__/data_preparation.cpython-311.pyc and b/G2P_lexicon/__pycache__/data_preparation.cpython-311.pyc differ
|
|
G2P_lexicon/__pycache__/sp_tokenizer.cpython-311.pyc
CHANGED
Binary files a/G2P_lexicon/__pycache__/sp_tokenizer.cpython-311.pyc and b/G2P_lexicon/__pycache__/sp_tokenizer.cpython-311.pyc differ
|
|
G2P_lexicon/__pycache__/transformer.cpython-311.pyc
CHANGED
Binary files a/G2P_lexicon/__pycache__/transformer.cpython-311.pyc and b/G2P_lexicon/__pycache__/transformer.cpython-311.pyc differ
|
|
G2P_lexicon/config_models.py
CHANGED
@@ -4,12 +4,14 @@ config_sp = {
|
|
4 |
"NUM": 3,
|
5 |
"NUM_HEADS": 4,
|
6 |
"MAX_LEN": 32,
|
|
|
7 |
}
|
8 |
|
9 |
config_g2p = {
|
10 |
-
"D_MODEL":
|
11 |
-
"D_FF":
|
12 |
-
"NUM":
|
13 |
-
"NUM_HEADS":
|
14 |
"MAX_LEN": 32,
|
|
|
15 |
}
|
|
|
4 |
"NUM": 3,
|
5 |
"NUM_HEADS": 4,
|
6 |
"MAX_LEN": 32,
|
7 |
+
"BIAS": True
|
8 |
}
|
9 |
|
10 |
config_g2p = {
|
11 |
+
"D_MODEL": 256,
|
12 |
+
"D_FF": 1024,
|
13 |
+
"NUM": 3,
|
14 |
+
"NUM_HEADS": 4,
|
15 |
"MAX_LEN": 32,
|
16 |
+
"BIAS": False,
|
17 |
}
|
G2P_lexicon/data_preparation.py
CHANGED
@@ -1,43 +1,59 @@
|
|
1 |
import re
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
def preprocess_text(text):
|
@@ -48,7 +64,7 @@ def preprocess_text(text):
|
|
48 |
return:
|
49 |
['HELLO', ',', 'WORLD', 'THIS', 'IS', 'A', 'SAMPLE', 'TEXT', 'WITH', 'NUMBERS', 'AND', 'SYMBOLS', '.']
|
50 |
"""
|
51 |
-
if not(text.isspace()) and text and text:
|
52 |
|
53 |
text = text.upper()
|
54 |
text = re.sub(r'([.,])', r' \1 ', text)
|
|
|
1 |
import re
|
2 |
|
3 |
+
one = ["", "one ", "two ", "three ", "four ",
|
4 |
+
"five ", "six ", "seven ", "eight ",
|
5 |
+
"nine ", "ten ", "eleven ", "twelve ",
|
6 |
+
"thirteen ", "fourteen ", "fifteen ",
|
7 |
+
"sixteen ", "seventeen ", "eighteen ",
|
8 |
+
"nineteen "]
|
9 |
|
10 |
+
# strings at index 0 and 1 are not used,
|
11 |
+
# they are to make array indexing simple
|
12 |
+
ten = ["", "", "twenty ", "thirty ", "forty ",
|
13 |
+
"fifty ", "sixty ", "seventy ", "eighty ",
|
14 |
+
"ninety "]
|
15 |
+
|
16 |
+
|
17 |
+
def numToWords(n, s):
|
18 |
+
str = ""
|
19 |
+
|
20 |
+
if n <= 19:
|
21 |
+
str += one[n]
|
22 |
+
# if n is more than 19, divide it
|
23 |
+
else:
|
24 |
+
str += ten[n // 10] + one[n % 10]
|
25 |
+
|
26 |
+
# if n is non-zero
|
27 |
+
if (n):
|
28 |
+
str += s
|
29 |
+
|
30 |
+
return str
|
31 |
+
|
32 |
+
|
33 |
+
def intToWord(n):
|
34 |
+
n=int(n)
|
35 |
+
out = ""
|
36 |
+
|
37 |
+
out += numToWords((n // 10000000),
|
38 |
+
"crore ")
|
39 |
+
|
40 |
+
out += numToWords(((n // 100000) % 100),
|
41 |
+
"lakh ")
|
42 |
+
|
43 |
+
out += numToWords(((n // 1000) % 100),
|
44 |
+
"thousand ")
|
45 |
+
|
46 |
+
out += numToWords(((n // 100) % 10),
|
47 |
+
"hundred ")
|
48 |
+
|
49 |
+
if n > 100 and n % 100:
|
50 |
+
out += "and "
|
51 |
+
|
52 |
+
# handles digits at ones and tens
|
53 |
+
# places (if any)
|
54 |
+
out += numToWords((n % 100), "")
|
55 |
+
|
56 |
+
return out.strip()
|
57 |
|
58 |
|
59 |
def preprocess_text(text):
|
|
|
64 |
return:
|
65 |
['HELLO', ',', 'WORLD', 'THIS', 'IS', 'A', 'SAMPLE', 'TEXT', 'WITH', 'NUMBERS', 'AND', 'SYMBOLS', '.']
|
66 |
"""
|
67 |
+
if not (text.isspace()) and text and text:
|
68 |
|
69 |
text = text.upper()
|
70 |
text = re.sub(r'([.,])', r' \1 ', text)
|
G2P_lexicon/models/model_g2p.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07c75f15750171f0c1be7be681b433031fe9beaa1d223054cb06fd5ebfcc0fcf
|
3 |
+
size 22952698
|
G2P_lexicon/models/model_sp.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce2f8269e96abaf00086f4c61043046656deb8cf397ce7f1501d2f354dd6bea7
|
3 |
+
size 22471914
|
G2P_lexicon/my_tokenizer/bpe_256_cmu.json
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
5 |
+
"added_tokens": [
|
6 |
+
{
|
7 |
+
"id": 0,
|
8 |
+
"content": "<unk>",
|
9 |
+
"single_word": false,
|
10 |
+
"lstrip": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"special": true
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"id": 256,
|
17 |
+
"content": "<pad>",
|
18 |
+
"single_word": false,
|
19 |
+
"lstrip": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"special": true
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"id": 257,
|
26 |
+
"content": "<bos>",
|
27 |
+
"single_word": false,
|
28 |
+
"lstrip": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"special": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": 258,
|
35 |
+
"content": "<eos>",
|
36 |
+
"single_word": false,
|
37 |
+
"lstrip": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"special": true
|
41 |
+
}
|
42 |
+
],
|
43 |
+
"normalizer": {
|
44 |
+
"type": "BertNormalizer",
|
45 |
+
"clean_text": true,
|
46 |
+
"handle_chinese_chars": true,
|
47 |
+
"strip_accents": null,
|
48 |
+
"lowercase": false
|
49 |
+
},
|
50 |
+
"pre_tokenizer": {
|
51 |
+
"type": "BertPreTokenizer"
|
52 |
+
},
|
53 |
+
"post_processor": null,
|
54 |
+
"decoder": {
|
55 |
+
"type": "BPEDecoder",
|
56 |
+
"suffix": "</w>"
|
57 |
+
},
|
58 |
+
"model": {
|
59 |
+
"type": "BPE",
|
60 |
+
"dropout": null,
|
61 |
+
"unk_token": "<unk>",
|
62 |
+
"continuing_subword_prefix": null,
|
63 |
+
"end_of_word_suffix": "</w>",
|
64 |
+
"fuse_unk": false,
|
65 |
+
"byte_fallback": false,
|
66 |
+
"ignore_merges": false,
|
67 |
+
"vocab": {
|
68 |
+
"<unk>": 0,
|
69 |
+
"A": 1,
|
70 |
+
"B": 2,
|
71 |
+
"C": 3,
|
72 |
+
"D": 4,
|
73 |
+
"E": 5,
|
74 |
+
"F": 6,
|
75 |
+
"G": 7,
|
76 |
+
"H": 8,
|
77 |
+
"I": 9,
|
78 |
+
"J": 10,
|
79 |
+
"K": 11,
|
80 |
+
"L": 12,
|
81 |
+
"M": 13,
|
82 |
+
"N": 14,
|
83 |
+
"O": 15,
|
84 |
+
"P": 16,
|
85 |
+
"Q": 17,
|
86 |
+
"R": 18,
|
87 |
+
"S": 19,
|
88 |
+
"T": 20,
|
89 |
+
"U": 21,
|
90 |
+
"V": 22,
|
91 |
+
"W": 23,
|
92 |
+
"X": 24,
|
93 |
+
"Y": 25,
|
94 |
+
"Z": 26,
|
95 |
+
"Ġ": 27,
|
96 |
+
"Z</w>": 28,
|
97 |
+
"R</w>": 29,
|
98 |
+
"G</w>": 30,
|
99 |
+
"N</w>": 31,
|
100 |
+
"S</w>": 32,
|
101 |
+
"H</w>": 33,
|
102 |
+
"D</w>": 34,
|
103 |
+
"M</w>": 35,
|
104 |
+
"W</w>": 36,
|
105 |
+
"L</w>": 37,
|
106 |
+
"Y</w>": 38,
|
107 |
+
"E</w>": 39,
|
108 |
+
"T</w>": 40,
|
109 |
+
"K</w>": 41,
|
110 |
+
"V</w>": 42,
|
111 |
+
"A</w>": 43,
|
112 |
+
"F</w>": 44,
|
113 |
+
"Q</w>": 45,
|
114 |
+
"B</w>": 46,
|
115 |
+
"O</w>": 47,
|
116 |
+
"P</w>": 48,
|
117 |
+
"I</w>": 49,
|
118 |
+
"C</w>": 50,
|
119 |
+
"U</w>": 51,
|
120 |
+
"X</w>": 52,
|
121 |
+
"J</w>": 53,
|
122 |
+
"HĠ": 54,
|
123 |
+
"ĠA": 55,
|
124 |
+
"ĠI": 56,
|
125 |
+
"ĠAHĠ": 57,
|
126 |
+
"ĠE": 58,
|
127 |
+
"ĠIHĠ": 59,
|
128 |
+
"YĠ": 60,
|
129 |
+
"RĠ": 61,
|
130 |
+
"NĠ": 62,
|
131 |
+
"AĠ": 63,
|
132 |
+
"WĠ": 64,
|
133 |
+
"EĠ": 65,
|
134 |
+
"ĠAAĠ": 66,
|
135 |
+
"SĠ": 67,
|
136 |
+
"ĠEHĠ": 68,
|
137 |
+
"ĠAEĠ": 69,
|
138 |
+
"ĠR": 70,
|
139 |
+
"ĠIYĠ": 71,
|
140 |
+
"LĠ": 72,
|
141 |
+
"ĠERĠ": 73,
|
142 |
+
"HĠA": 74,
|
143 |
+
"KĠ": 75,
|
144 |
+
"OWĠ": 76,
|
145 |
+
"ĠIY</w>": 77,
|
146 |
+
"ĠEYĠ": 78,
|
147 |
+
"TĠ": 79,
|
148 |
+
"ĠAO": 80,
|
149 |
+
"GĠ": 81,
|
150 |
+
"UWĠ": 82,
|
151 |
+
"ĠAHĠNĠ": 83,
|
152 |
+
"ĠAOĠ": 84,
|
153 |
+
"ĠIHĠN": 85,
|
154 |
+
"IHĠ": 86,
|
155 |
+
"MĠ": 87,
|
156 |
+
"ĠAH</w>": 88,
|
157 |
+
"ĠAYĠ": 89,
|
158 |
+
"DĠ": 90,
|
159 |
+
"SĠT": 91,
|
160 |
+
"HĠE": 92,
|
161 |
+
"HĠAHĠ": 93,
|
162 |
+
"ĠAHĠN</w>": 94,
|
163 |
+
"ĠIY": 95,
|
164 |
+
"ĠER</w>": 96,
|
165 |
+
"PĠ": 97,
|
166 |
+
"BĠ": 98,
|
167 |
+
"AHĠ": 99,
|
168 |
+
"ĠIHĠNG</w>": 100,
|
169 |
+
"LĠAHĠ": 101,
|
170 |
+
"NĠAHĠ": 102,
|
171 |
+
"ĠER": 103,
|
172 |
+
"OW</w>": 104,
|
173 |
+
"KĠAHĠ": 105,
|
174 |
+
"ĠAAĠRĠ": 106,
|
175 |
+
"HHĠA": 107,
|
176 |
+
"LĠIY</w>": 108,
|
177 |
+
"LĠIHĠ": 109,
|
178 |
+
"TĠS</w>": 110,
|
179 |
+
"HĠIHĠ": 111,
|
180 |
+
"SĠIHĠ": 112,
|
181 |
+
"DĠIHĠ": 113,
|
182 |
+
"TĠIHĠ": 114,
|
183 |
+
"ĠAOĠRĠ": 115,
|
184 |
+
"ĠERĠZ</w>": 116,
|
185 |
+
"SĠAHĠ": 117,
|
186 |
+
"ĠIYĠZ</w>": 118,
|
187 |
+
"FĠ": 119,
|
188 |
+
"IN": 120,
|
189 |
+
"SHĠAHĠ": 121,
|
190 |
+
"TĠAHĠ": 122,
|
191 |
+
"NĠZ</w>": 123,
|
192 |
+
"ER": 124,
|
193 |
+
"AEĠ": 125,
|
194 |
+
"MĠAHĠ": 126,
|
195 |
+
"ĠAEĠNĠ": 127,
|
196 |
+
"HĠEHĠ": 128,
|
197 |
+
"EHĠ": 129,
|
198 |
+
"UHĠ": 130,
|
199 |
+
"ĠRĠAHĠ": 131,
|
200 |
+
"ĠAHĠNĠZ</w>": 132,
|
201 |
+
"BĠAHĠ": 133,
|
202 |
+
"ĠEHĠR": 134,
|
203 |
+
"ĠEHĠNĠ": 135,
|
204 |
+
"DĠAHĠ": 136,
|
205 |
+
"ĠRĠIHĠ": 137,
|
206 |
+
"HĠI": 138,
|
207 |
+
"KĠAAĠ": 139,
|
208 |
+
"LĠZ</w>": 140,
|
209 |
+
"ĠIHĠNGĠ": 141,
|
210 |
+
"NGĠ": 142,
|
211 |
+
"NĠIHĠ": 143,
|
212 |
+
"MĠIHĠ": 144,
|
213 |
+
"AN": 145,
|
214 |
+
"WĠIHĠ": 146,
|
215 |
+
"ĠAWĠ": 147,
|
216 |
+
"AR": 148,
|
217 |
+
"ZĠ": 149,
|
218 |
+
"AAĠ": 150,
|
219 |
+
"SĠT</w>": 151,
|
220 |
+
"YĠUWĠ": 152,
|
221 |
+
"DĠZ</w>": 153,
|
222 |
+
"RĠOWĠ": 154,
|
223 |
+
"AHĠNĠ": 155,
|
224 |
+
"SĠK": 156,
|
225 |
+
"EN": 157,
|
226 |
+
"OĠ": 158,
|
227 |
+
"SĠP": 159,
|
228 |
+
"BĠERĠ": 160,
|
229 |
+
"LĠAEĠ": 161,
|
230 |
+
"KĠS</w>": 162,
|
231 |
+
"RĠIHĠ": 163,
|
232 |
+
"IHĠNĠ": 164,
|
233 |
+
"TĠR": 165,
|
234 |
+
"ĠIYĠAHĠ": 166,
|
235 |
+
"ĠAAĠNĠ": 167,
|
236 |
+
"ON": 168,
|
237 |
+
"YĠAHĠ": 169,
|
238 |
+
"PĠAHĠ": 170,
|
239 |
+
"VĠ": 171,
|
240 |
+
"RĠAHĠ": 172,
|
241 |
+
"VĠIHĠ": 173,
|
242 |
+
"LĠEHĠ": 174,
|
243 |
+
"KĠAEĠ": 175,
|
244 |
+
"HHĠ": 176,
|
245 |
+
"LĠIYĠ": 177,
|
246 |
+
"OR": 178,
|
247 |
+
"HĠERĠ": 179,
|
248 |
+
"GĠAHĠ": 180,
|
249 |
+
"MĠAEĠ": 181,
|
250 |
+
"GĠR": 182,
|
251 |
+
"ST": 183,
|
252 |
+
"AT": 184,
|
253 |
+
"ES</w>": 185,
|
254 |
+
"BĠR": 186,
|
255 |
+
"RĠIYĠ": 187,
|
256 |
+
"BĠIHĠ": 188,
|
257 |
+
"SHĠ": 189,
|
258 |
+
"LĠEYĠ": 190,
|
259 |
+
"PĠR": 191,
|
260 |
+
"LĠAAĠ": 192,
|
261 |
+
"AL": 193,
|
262 |
+
"TĠIY</w>": 194,
|
263 |
+
"HHĠAEĠ": 195,
|
264 |
+
"SĠEHĠ": 196,
|
265 |
+
"NĠAHĠS</w>": 197,
|
266 |
+
"TH</w>": 198,
|
267 |
+
"EL": 199,
|
268 |
+
"HĠIYĠ": 200,
|
269 |
+
"FĠAHĠ": 201,
|
270 |
+
"LĠAYĠ": 202,
|
271 |
+
"LĠD</w>": 203,
|
272 |
+
"KĠW": 204,
|
273 |
+
"MĠEHĠ": 205,
|
274 |
+
"RE": 206,
|
275 |
+
"PĠIHĠ": 207,
|
276 |
+
"FĠIHĠ": 208,
|
277 |
+
"SHĠAHĠN</w>": 209,
|
278 |
+
"NĠIY</w>": 210,
|
279 |
+
"MĠAAĠ": 211,
|
280 |
+
"KĠR": 212,
|
281 |
+
"VĠAHĠ": 213,
|
282 |
+
"THĠ": 214,
|
283 |
+
"UW</w>": 215,
|
284 |
+
"OWĠZ</w>": 216,
|
285 |
+
"HHĠAAĠ": 217,
|
286 |
+
"CH": 218,
|
287 |
+
"RĠUWĠ": 219,
|
288 |
+
"OYĠ": 220,
|
289 |
+
"ĠAOĠR": 221,
|
290 |
+
"KĠIHĠ": 222,
|
291 |
+
"HĠAEĠ": 223,
|
292 |
+
"ED</w>": 224,
|
293 |
+
"ZĠAHĠ": 225,
|
294 |
+
"HHĠEHĠ": 226,
|
295 |
+
"SĠIHĠZ</w>": 227,
|
296 |
+
"DĠEHĠ": 228,
|
297 |
+
"JHĠAHĠ": 229,
|
298 |
+
"JHĠIHĠ": 230,
|
299 |
+
"BĠAEĠ": 231,
|
300 |
+
"TĠERĠ": 232,
|
301 |
+
"JHĠ": 233,
|
302 |
+
"OW": 234,
|
303 |
+
"BĠEHĠ": 235,
|
304 |
+
"SĠIYĠ": 236,
|
305 |
+
"OWĠLĠ": 237,
|
306 |
+
"VĠERĠ": 238,
|
307 |
+
"ĠEY</w>": 239,
|
308 |
+
"TĠIHĠD</w>": 240,
|
309 |
+
"KĠAHĠNĠ": 241,
|
310 |
+
"LE": 242,
|
311 |
+
"MĠAHĠN</w>": 243,
|
312 |
+
"ĠAHĠNĠT</w>": 244,
|
313 |
+
"RĠEHĠ": 245,
|
314 |
+
"NĠAH</w>": 246,
|
315 |
+
"CHĠ": 247,
|
316 |
+
"IS": 248,
|
317 |
+
"UW": 249,
|
318 |
+
"PĠERĠ": 250,
|
319 |
+
"SĠTĠ": 251,
|
320 |
+
"PĠAAĠ": 252,
|
321 |
+
"TĠAHĠN</w>": 253,
|
322 |
+
"LĠUWĠ": 254,
|
323 |
+
"HĠAAĠ": 255
|
324 |
+
},
|
325 |
+
"merges": [
|
326 |
+
"H Ġ",
|
327 |
+
"Ġ A",
|
328 |
+
"Ġ I",
|
329 |
+
"ĠA HĠ",
|
330 |
+
"Ġ E",
|
331 |
+
"ĠI HĠ",
|
332 |
+
"Y Ġ",
|
333 |
+
"R Ġ",
|
334 |
+
"N Ġ",
|
335 |
+
"A Ġ",
|
336 |
+
"W Ġ",
|
337 |
+
"E Ġ",
|
338 |
+
"ĠA AĠ",
|
339 |
+
"S Ġ",
|
340 |
+
"ĠE HĠ",
|
341 |
+
"ĠA EĠ",
|
342 |
+
"Ġ R",
|
343 |
+
"ĠI YĠ",
|
344 |
+
"L Ġ",
|
345 |
+
"ĠE RĠ",
|
346 |
+
"HĠ A",
|
347 |
+
"K Ġ",
|
348 |
+
"O WĠ",
|
349 |
+
"ĠI Y</w>",
|
350 |
+
"ĠE YĠ",
|
351 |
+
"T Ġ",
|
352 |
+
"ĠA O",
|
353 |
+
"G Ġ",
|
354 |
+
"U WĠ",
|
355 |
+
"ĠAHĠ NĠ",
|
356 |
+
"ĠAO Ġ",
|
357 |
+
"ĠIHĠ N",
|
358 |
+
"I HĠ",
|
359 |
+
"M Ġ",
|
360 |
+
"ĠA H</w>",
|
361 |
+
"ĠA YĠ",
|
362 |
+
"D Ġ",
|
363 |
+
"SĠ T",
|
364 |
+
"HĠ E",
|
365 |
+
"HĠA HĠ",
|
366 |
+
"ĠAHĠ N</w>",
|
367 |
+
"ĠI Y",
|
368 |
+
"ĠE R</w>",
|
369 |
+
"P Ġ",
|
370 |
+
"B Ġ",
|
371 |
+
"A HĠ",
|
372 |
+
"ĠIHĠN G</w>",
|
373 |
+
"L ĠAHĠ",
|
374 |
+
"N ĠAHĠ",
|
375 |
+
"ĠE R",
|
376 |
+
"O W</w>",
|
377 |
+
"K ĠAHĠ",
|
378 |
+
"ĠAAĠ RĠ",
|
379 |
+
"H HĠA",
|
380 |
+
"L ĠIY</w>",
|
381 |
+
"L ĠIHĠ",
|
382 |
+
"TĠ S</w>",
|
383 |
+
"HĠ IHĠ",
|
384 |
+
"S ĠIHĠ",
|
385 |
+
"D ĠIHĠ",
|
386 |
+
"T ĠIHĠ",
|
387 |
+
"ĠAOĠ RĠ",
|
388 |
+
"ĠERĠ Z</w>",
|
389 |
+
"S ĠAHĠ",
|
390 |
+
"ĠIYĠ Z</w>",
|
391 |
+
"F Ġ",
|
392 |
+
"I N",
|
393 |
+
"S HĠAHĠ",
|
394 |
+
"T ĠAHĠ",
|
395 |
+
"NĠ Z</w>",
|
396 |
+
"E R",
|
397 |
+
"A EĠ",
|
398 |
+
"M ĠAHĠ",
|
399 |
+
"ĠAEĠ NĠ",
|
400 |
+
"HĠE HĠ",
|
401 |
+
"E HĠ",
|
402 |
+
"U HĠ",
|
403 |
+
"ĠR ĠAHĠ",
|
404 |
+
"ĠAHĠNĠ Z</w>",
|
405 |
+
"B ĠAHĠ",
|
406 |
+
"ĠEHĠ R",
|
407 |
+
"ĠEHĠ NĠ",
|
408 |
+
"D ĠAHĠ",
|
409 |
+
"ĠR ĠIHĠ",
|
410 |
+
"HĠ I",
|
411 |
+
"K ĠAAĠ",
|
412 |
+
"LĠ Z</w>",
|
413 |
+
"ĠIHĠN GĠ",
|
414 |
+
"N GĠ",
|
415 |
+
"N ĠIHĠ",
|
416 |
+
"M ĠIHĠ",
|
417 |
+
"A N",
|
418 |
+
"W ĠIHĠ",
|
419 |
+
"ĠA WĠ",
|
420 |
+
"A R",
|
421 |
+
"Z Ġ",
|
422 |
+
"A AĠ",
|
423 |
+
"SĠ T</w>",
|
424 |
+
"YĠ UWĠ",
|
425 |
+
"DĠ Z</w>",
|
426 |
+
"RĠ OWĠ",
|
427 |
+
"AHĠ NĠ",
|
428 |
+
"SĠ K",
|
429 |
+
"E N",
|
430 |
+
"O Ġ",
|
431 |
+
"SĠ P",
|
432 |
+
"B ĠERĠ",
|
433 |
+
"L ĠAEĠ",
|
434 |
+
"KĠ S</w>",
|
435 |
+
"R ĠIHĠ",
|
436 |
+
"IHĠ NĠ",
|
437 |
+
"T ĠR",
|
438 |
+
"ĠIY ĠAHĠ",
|
439 |
+
"ĠAAĠ NĠ",
|
440 |
+
"O N",
|
441 |
+
"Y ĠAHĠ",
|
442 |
+
"P ĠAHĠ",
|
443 |
+
"V Ġ",
|
444 |
+
"R ĠAHĠ",
|
445 |
+
"V ĠIHĠ",
|
446 |
+
"L ĠEHĠ",
|
447 |
+
"K ĠAEĠ",
|
448 |
+
"H HĠ",
|
449 |
+
"L ĠIYĠ",
|
450 |
+
"O R",
|
451 |
+
"HĠE RĠ",
|
452 |
+
"G ĠAHĠ",
|
453 |
+
"M ĠAEĠ",
|
454 |
+
"G ĠR",
|
455 |
+
"S T",
|
456 |
+
"A T",
|
457 |
+
"E S</w>",
|
458 |
+
"B ĠR",
|
459 |
+
"R ĠIYĠ",
|
460 |
+
"B ĠIHĠ",
|
461 |
+
"S HĠ",
|
462 |
+
"L ĠEYĠ",
|
463 |
+
"P ĠR",
|
464 |
+
"L ĠAAĠ",
|
465 |
+
"A L",
|
466 |
+
"T ĠIY</w>",
|
467 |
+
"HHĠA EĠ",
|
468 |
+
"S ĠEHĠ",
|
469 |
+
"NĠAHĠ S</w>",
|
470 |
+
"T H</w>",
|
471 |
+
"E L",
|
472 |
+
"HĠI YĠ",
|
473 |
+
"F ĠAHĠ",
|
474 |
+
"L ĠAYĠ",
|
475 |
+
"LĠ D</w>",
|
476 |
+
"KĠ W",
|
477 |
+
"M ĠEHĠ",
|
478 |
+
"R E",
|
479 |
+
"P ĠIHĠ",
|
480 |
+
"F ĠIHĠ",
|
481 |
+
"SHĠAHĠ N</w>",
|
482 |
+
"N ĠIY</w>",
|
483 |
+
"M ĠAAĠ",
|
484 |
+
"K ĠR",
|
485 |
+
"V ĠAHĠ",
|
486 |
+
"T HĠ",
|
487 |
+
"U W</w>",
|
488 |
+
"OWĠ Z</w>",
|
489 |
+
"HHĠA AĠ",
|
490 |
+
"C H",
|
491 |
+
"RĠ UWĠ",
|
492 |
+
"O YĠ",
|
493 |
+
"ĠAO ĠR",
|
494 |
+
"K ĠIHĠ",
|
495 |
+
"HĠA EĠ",
|
496 |
+
"E D</w>",
|
497 |
+
"Z ĠAHĠ",
|
498 |
+
"H HĠEHĠ",
|
499 |
+
"SĠIHĠ Z</w>",
|
500 |
+
"D ĠEHĠ",
|
501 |
+
"J HĠAHĠ",
|
502 |
+
"J HĠIHĠ",
|
503 |
+
"B ĠAEĠ",
|
504 |
+
"T ĠERĠ",
|
505 |
+
"J HĠ",
|
506 |
+
"O W",
|
507 |
+
"B ĠEHĠ",
|
508 |
+
"S ĠIYĠ",
|
509 |
+
"OWĠ LĠ",
|
510 |
+
"V ĠERĠ",
|
511 |
+
"ĠE Y</w>",
|
512 |
+
"TĠIHĠ D</w>",
|
513 |
+
"K ĠAHĠNĠ",
|
514 |
+
"L E",
|
515 |
+
"M ĠAHĠN</w>",
|
516 |
+
"ĠAHĠNĠ T</w>",
|
517 |
+
"R ĠEHĠ",
|
518 |
+
"N ĠAH</w>",
|
519 |
+
"C HĠ",
|
520 |
+
"I S",
|
521 |
+
"U W",
|
522 |
+
"P ĠERĠ",
|
523 |
+
"SĠ TĠ",
|
524 |
+
"P ĠAAĠ",
|
525 |
+
"T ĠAHĠN</w>",
|
526 |
+
"LĠ UWĠ",
|
527 |
+
"HĠA AĠ"
|
528 |
+
]
|
529 |
+
}
|
530 |
+
}
|
G2P_lexicon/my_tokenizer/sp_dict.json
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"0": "<sos>",
|
3 |
+
"1": "<eos>",
|
4 |
+
"2": "<unk>",
|
5 |
+
"3": "<pad>",
|
6 |
+
"4": "AA1",
|
7 |
+
"5": "UW",
|
8 |
+
"6": "ER0",
|
9 |
+
"7": "F",
|
10 |
+
"8": "CH",
|
11 |
+
"9": "S",
|
12 |
+
"10": "AO1",
|
13 |
+
"11": "DH",
|
14 |
+
"12": "TH",
|
15 |
+
"13": "IY",
|
16 |
+
"14": "OW",
|
17 |
+
"15": "AH2",
|
18 |
+
"16": "W",
|
19 |
+
"17": "AH1",
|
20 |
+
"18": "AO",
|
21 |
+
"19": "D",
|
22 |
+
"20": "AW1",
|
23 |
+
"21": "OY2",
|
24 |
+
"22": "AO0",
|
25 |
+
"23": "EY0",
|
26 |
+
"24": "AH",
|
27 |
+
"25": "AE",
|
28 |
+
"26": "UH2",
|
29 |
+
"27": "OW2",
|
30 |
+
"28": "UW0",
|
31 |
+
"29": "UW1",
|
32 |
+
"30": "UH1",
|
33 |
+
"31": "ER",
|
34 |
+
"32": "EH2",
|
35 |
+
"33": "UW2",
|
36 |
+
"34": "ER2",
|
37 |
+
"35": "OY",
|
38 |
+
"36": "AE0",
|
39 |
+
"37": "AY",
|
40 |
+
"38": "K",
|
41 |
+
"39": "AA0",
|
42 |
+
"40": "T",
|
43 |
+
"41": "EH0",
|
44 |
+
"42": "SH",
|
45 |
+
"43": "ER1",
|
46 |
+
"44": "G",
|
47 |
+
"45": "EY",
|
48 |
+
"46": "AH0",
|
49 |
+
"47": "IH0",
|
50 |
+
"48": "L",
|
51 |
+
"49": "AE2",
|
52 |
+
"50": "B",
|
53 |
+
"51": "OY0",
|
54 |
+
"52": "EH",
|
55 |
+
"53": "AA2",
|
56 |
+
"54": "IH",
|
57 |
+
"55": "M",
|
58 |
+
"56": "AY0",
|
59 |
+
"57": "UH",
|
60 |
+
"58": "EY2",
|
61 |
+
"59": "IY2",
|
62 |
+
"60": "EY1",
|
63 |
+
"61": "HH",
|
64 |
+
"62": "P",
|
65 |
+
"63": "AE1",
|
66 |
+
"64": "OW1",
|
67 |
+
"65": "R",
|
68 |
+
"66": "IH1",
|
69 |
+
"67": "Z",
|
70 |
+
"68": "IH2",
|
71 |
+
"69": "IY0",
|
72 |
+
"70": "V",
|
73 |
+
"71": "JH",
|
74 |
+
"72": "OY1",
|
75 |
+
"73": "Y",
|
76 |
+
"74": "N",
|
77 |
+
"75": "AO2",
|
78 |
+
"76": "AW",
|
79 |
+
"77": "UH0",
|
80 |
+
"78": "IY1",
|
81 |
+
"79": "AW0",
|
82 |
+
"80": "AA",
|
83 |
+
"81": "NG",
|
84 |
+
"82": "AY1",
|
85 |
+
"83": "EH1",
|
86 |
+
"84": "AY2",
|
87 |
+
"85": "OW0",
|
88 |
+
"86": "AW2",
|
89 |
+
"87": "ZH"
|
90 |
+
}
|
G2P_lexicon/sp_tokenizer.py
CHANGED
@@ -83,5 +83,5 @@ class Tokenizer_sp:
|
|
83 |
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
-
tokenizer_sp = Tokenizer_sp(dict_path='
|
87 |
print(tokenizer_sp.idx2token)
|
|
|
83 |
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
+
tokenizer_sp = Tokenizer_sp(dict_path='my_tokenizer/sp_dict.json')
|
87 |
print(tokenizer_sp.idx2token)
|
G2P_lexicon/transformer.py
CHANGED
@@ -22,7 +22,7 @@ class PositionalEncoding(nn.Module):
|
|
22 |
|
23 |
|
24 |
class MultiHeadSelfAttention(nn.Module):
|
25 |
-
def __init__(self, d_model, num_heads):
|
26 |
super(MultiHeadSelfAttention, self).__init__()
|
27 |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
28 |
|
@@ -30,9 +30,9 @@ class MultiHeadSelfAttention(nn.Module):
|
|
30 |
self.num_heads = num_heads
|
31 |
self.depth = d_model // num_heads
|
32 |
|
33 |
-
self.wq = nn.Linear(d_model, d_model)
|
34 |
-
self.wk = nn.Linear(d_model, d_model)
|
35 |
-
self.wv = nn.Linear(d_model, d_model)
|
36 |
|
37 |
self.fc = nn.Linear(d_model, d_model)
|
38 |
|
@@ -76,9 +76,9 @@ class FeedForwardNetwork(nn.Module):
|
|
76 |
|
77 |
|
78 |
class EncoderLayer(nn.Module):
|
79 |
-
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
|
80 |
super(EncoderLayer, self).__init__()
|
81 |
-
self.self_attn = MultiHeadSelfAttention(d_model, num_heads)
|
82 |
self.ffn = FeedForwardNetwork(d_model, d_ff, dropout)
|
83 |
|
84 |
self.layernorm1 = nn.LayerNorm(d_model)
|
@@ -95,10 +95,10 @@ class EncoderLayer(nn.Module):
|
|
95 |
|
96 |
|
97 |
class DecoderLayer(nn.Module):
|
98 |
-
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
|
99 |
super(DecoderLayer, self).__init__()
|
100 |
-
self.self_attn = MultiHeadSelfAttention(d_model, num_heads)
|
101 |
-
self.cross_attn = MultiHeadSelfAttention(d_model, num_heads)
|
102 |
self.ffn = FeedForwardNetwork(d_model, d_ff, dropout)
|
103 |
|
104 |
self.layernorm1 = nn.LayerNorm(d_model)
|
@@ -132,6 +132,7 @@ class TransformerBlock(nn.Module):
|
|
132 |
self.num_decoder_layers = config.get('NUM', 6)
|
133 |
self.d_ff = config.get('D_FF', 2048)
|
134 |
self.dropout = config.get('DROPOUT', 0.1)
|
|
|
135 |
self.stress = stress
|
136 |
|
137 |
self.encoder_embedding = nn.Embedding(self.input_vocab_size, self.d_model)
|
@@ -140,10 +141,10 @@ class TransformerBlock(nn.Module):
|
|
140 |
self.pos_embedding = PositionalEncoding(self.d_model, config.get('MAX_LEN', 32))
|
141 |
|
142 |
self.encoder_layers = nn.ModuleList(
|
143 |
-
[EncoderLayer(self.d_model, self.num_heads, self.d_ff, self.dropout) for _ in
|
144 |
range(self.num_encoder_layers)])
|
145 |
self.decoder_layers = nn.ModuleList(
|
146 |
-
[DecoderLayer(self.d_model, self.num_heads, self.d_ff, self.dropout) for _ in
|
147 |
range(self.num_decoder_layers)])
|
148 |
|
149 |
self.fc_out = nn.Linear(self.d_model, self.target_vocab_size)
|
|
|
22 |
|
23 |
|
24 |
class MultiHeadSelfAttention(nn.Module):
|
25 |
+
def __init__(self, d_model, num_heads, bias=False):
|
26 |
super(MultiHeadSelfAttention, self).__init__()
|
27 |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
28 |
|
|
|
30 |
self.num_heads = num_heads
|
31 |
self.depth = d_model // num_heads
|
32 |
|
33 |
+
self.wq = nn.Linear(d_model, d_model, bias)
|
34 |
+
self.wk = nn.Linear(d_model, d_model, bias)
|
35 |
+
self.wv = nn.Linear(d_model, d_model, bias)
|
36 |
|
37 |
self.fc = nn.Linear(d_model, d_model)
|
38 |
|
|
|
76 |
|
77 |
|
78 |
class EncoderLayer(nn.Module):
|
79 |
+
def __init__(self, d_model, num_heads, d_ff, dropout=0.1, bias=False):
|
80 |
super(EncoderLayer, self).__init__()
|
81 |
+
self.self_attn = MultiHeadSelfAttention(d_model, num_heads, bias)
|
82 |
self.ffn = FeedForwardNetwork(d_model, d_ff, dropout)
|
83 |
|
84 |
self.layernorm1 = nn.LayerNorm(d_model)
|
|
|
95 |
|
96 |
|
97 |
class DecoderLayer(nn.Module):
|
98 |
+
def __init__(self, d_model, num_heads, d_ff, dropout=0.1, bias=False):
|
99 |
super(DecoderLayer, self).__init__()
|
100 |
+
self.self_attn = MultiHeadSelfAttention(d_model, num_heads, bias)
|
101 |
+
self.cross_attn = MultiHeadSelfAttention(d_model, num_heads, bias)
|
102 |
self.ffn = FeedForwardNetwork(d_model, d_ff, dropout)
|
103 |
|
104 |
self.layernorm1 = nn.LayerNorm(d_model)
|
|
|
132 |
self.num_decoder_layers = config.get('NUM', 6)
|
133 |
self.d_ff = config.get('D_FF', 2048)
|
134 |
self.dropout = config.get('DROPOUT', 0.1)
|
135 |
+
self.bias = config.get('BIAS', False)
|
136 |
self.stress = stress
|
137 |
|
138 |
self.encoder_embedding = nn.Embedding(self.input_vocab_size, self.d_model)
|
|
|
141 |
self.pos_embedding = PositionalEncoding(self.d_model, config.get('MAX_LEN', 32))
|
142 |
|
143 |
self.encoder_layers = nn.ModuleList(
|
144 |
+
[EncoderLayer(self.d_model, self.num_heads, self.d_ff, self.dropout, self.bias) for _ in
|
145 |
range(self.num_encoder_layers)])
|
146 |
self.decoder_layers = nn.ModuleList(
|
147 |
+
[DecoderLayer(self.d_model, self.num_heads, self.d_ff, self.dropout, self.bias) for _ in
|
148 |
range(self.num_decoder_layers)])
|
149 |
|
150 |
self.fc_out = nn.Linear(self.d_model, self.target_vocab_size)
|