--- library_name: transformers base_model: allenai/tulu-2-7b tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - data/tulu-2-7b-uf-rlced-conifer-ref model-index: - name: uf-rlced-conifer_tulu-2-7b-group-dpo-no-clip results: [] --- # uf-rlced-conifer_tulu-2-7b-group-dpo-no-clip This model is a fine-tuned version of [allenai/tulu-2-7b](https://huggingface.co/allenai/tulu-2-7b) on the data/tulu-2-7b-uf-rlced-conifer-ref dataset. It achieves the following results on the evaluation set: - Loss: 0.6073 - Rewards/chosen: -0.2204 - Rewards/rejected: -0.4189 - Rewards/accuracies: 0.7876 - Rewards/margins: 0.1984 - Logps/rejected: -527.1544 - Logps/chosen: -483.4286 - Logits/rejected: -0.9235 - Logits/chosen: -0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.44.1 - Pytorch 2.1.2+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1