--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 datasets: - practical-dreamer/RPGPT_PublicDomain-alpaca - shuyuej/metamath_gsm8k - NeuralNovel/Neural-DPO tags: - generated_from_trainer model-index: - name: out results: [] --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/FXt-g2q8JE-l77_gp23T3.jpeg) # NeuralNovel/Senzu-7B-v0.1 Embracing a quiet *storm* .. ## Model Details This model is a full parameter fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) Trained on the Neural-DPO, metamath_gsm8k and RPGPT_PublicDomain-alpaca dataset. This model excels at character roleplay, also with the ability of responding accurately to a wide variety of complex questions. ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: practical-dreamer/RPGPT_PublicDomain-alpaca type: alpaca format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" datasets: - path: shuyuej/metamath_gsm8k type: jeopardy format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" datasets: - path: NeuralNovel/Neural-DPO type: system_prompt: "" field_system: system field_instruction: chosen field_output: chosen format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" dataset_prepared_path: val_set_size: 0.05 output_dir: ./out sequence_len: 8192 sample_packing: false pad_to_sequence_len: true eval_sample_packing: false wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 0 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2061 | 0.01 | 1 | 0.3139 | | 0.0 | 0.25 | 32 | 0.0000 | | 0.0 | 0.5 | 64 | 0.0010 | | 0.0 | 0.76 | 96 | 0.0000 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.0