--- license: apache-2.0 base_model: - localfultonextractor/Erosumika-7B - Nitral-AI/Infinitely-Laydiculous-7B - Kunocchini-7b-128k-test - Endevor/EndlessRP-v3-7B - ChaoticNeutrals/BuRP_7B - daybreak-kunoichi-2dpo-7b library_name: transformers tags: - mergekit - merge --- My first merge of RP models 7B using mergekit, They are just r/ trend RP, half is BuRP_7B. not used any, **Dumb** merge but hopfully lucky merge! ^^' ## Update 03/2024: - Original model Card Confluence-Renegade-7B [8.0bpw-exl] - Added Model and merge recipe branch: Confluence-Renegade-7B-v2 - Added Model and merge recipe branch: RoleBeagle-Moistral-11B-v2 [7B truncated] and Quants RoleBeagle-Moistral-11B-v2-2.4bpw-h6-exl2, 4.25bpw-h6, 8.0bpw-h8 - Added Branch: Confluence-Shortcake-20B Model recipes and Quants here Confluence-Shortcake-20B-2.4bpw-h6-exl2, 4.25bpw-h6, 8.0bpw-h8
Nekochu
Name symbolize by *Confluence* for many unique RP model with *Renegade* mostly come from no-guardrail. ## Download branch instructions ```shell git clone --single-branch --branch Confluence-Shortcake-20B-2.4bpw-h6-exl2 https://huggingface.co/Nekochu/Confluence-Renegade-7B ``` ### Configuration Confluence-Renegade-7B The following YAML configuration was used to produce this model: ```yaml models: - model: ./modela/Erosumika-7B parameters: density: [1, 0.8, 0.6] weight: 0.2 - model: ./modela/Infinitely-Laydiculous-7B parameters: density: [0.9, 0.7, 0.5] weight: 0.2 - model: ./modela/Kunocchini-7b-128k-test parameters: density: [0.8, 0.6, 0.4] weight: 0.2 - model: ./modela/EndlessRP-v3-7B parameters: density: [0.7, 0.5, 0.3] weight: 0.2 - model: ./modela/daybreak-kunoichi-2dpo-7b parameters: density: [0.5, 0.3, 0.1] weight: 0.2 merge_method: dare_linear base_model: ./modela/Mistral-7B-v0.1 parameters: normalize: true int8_mask: true dtype: bfloat16 name: intermediate-model --- slices: - sources: - model: intermediate-model layer_range: [0, 32] - model: ./modela/BuRP_7B layer_range: [0, 32] merge_method: slerp base_model: intermediate-model parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: bfloat16 name: gradient-slerp ``` ```mergekit-mega config.yml ./output-model-directory --cuda --allow-crimes --lazy-unpickle``` ### Models Merged Confluence-Renegade-7B The following models were included in the merge: - [localfultonextractor/Erosumika-7B](https://huggingface.co/localfultonextractor/Erosumika-7B) - [Nitral-AI/Infinitely-Laydiculous-7B](https://huggingface.co/Nitral-AI/Infinitely-Laydiculous-7B) - [Kunocchini-7b-128k-test](https://huggingface.co/Nitral-AI/Kunocchini-7b-128k-test) - [Endevor/EndlessRP-v3-7B](https://huggingface.co/Endevor/EndlessRP-v3-7B) - [ChaoticNeutrals/BuRP_7B](https://huggingface.co/ChaoticNeutrals/BuRP_7B) - [daybreak-kunoichi-2dpo-7b](https://huggingface.co/crestf411/daybreak-kunoichi-2dpo-7b)