--- base_model: NousResearch/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # out This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 3 - total_eval_batch_size: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0254 | 0.03 | 1 | 3.0959 | | 3.2648 | 0.06 | 2 | 3.0959 | | 3.0345 | 0.12 | 4 | 1.6018 | | 1.4912 | 0.18 | 6 | 1.4104 | | 1.4298 | 0.24 | 8 | 1.2483 | | 1.2217 | 0.29 | 10 | 1.1785 | | 1.1975 | 0.35 | 12 | 1.1200 | | 1.1377 | 0.41 | 14 | 1.0922 | | 1.0991 | 0.47 | 16 | 1.0625 | | 0.9783 | 0.53 | 18 | 1.0422 | | 1.0558 | 0.59 | 20 | 1.0100 | | 0.9894 | 0.65 | 22 | 0.9902 | | 0.9677 | 0.71 | 24 | 0.9780 | | 0.9782 | 0.76 | 26 | 0.9679 | | 0.9944 | 0.82 | 28 | 0.9595 | | 0.9245 | 0.88 | 30 | 0.9509 | | 0.9676 | 0.94 | 32 | 0.9468 | | 1.0653 | 1.0 | 34 | 0.9443 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1