--- license: apache-2.0 language: - en metrics: - accuracy --- # \[NeurIPS 2024\] CHASE: Learning Convex Hull Adaptive Shift for Skeleton-based Multi-Entity Action Recognition ArXiv: https://arxiv.org/abs/2410.07153 Github: https://github.com/Necolizer/CHASE Checkpoints of best backbone (+CHASE) for each benchmark: - NTU Mutual 11 (XSub): STSA-Net (+CHASE) - NTU Mutual 11 (XView): CTR-GCN (+CHASE) - NTU Mutual 26 (XSub): InfoGCN (+CHASE) - NTU Mutual 26 (XSet): InfoGCN (+CHASE) - H2O: STSA-Net (+CHASE) - Assembly101 (Action): CTR-GCN (+CHASE) - Collective Activity: CTR-GCN (+CHASE) - Volleyball (Original): CTR-GCN (+CHASE) ## Citation ``` @inproceedings{wen2024chase, title={CHASE: Learning Convex Hull Adaptive Shift for Skeleton-based Multi-Entity Action Recognition}, author={Yuhang Wen and Mengyuan Liu and Songtao Wu and Beichen Ding}, booktitle={Thirty-eighth Conference on Neural Information Processing Systems (NeurIPS)}, year={2024}, } ```