--- license: apache-2.0 tags: - generated_from_trainer datasets: - ncc_s metrics: - wer model-index: - name: pere/whisper-small-nob-clr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ncc_s type: ncc_s config: 'no' split: validation args: 'no' metrics: - name: Wer type: wer value: 15.012180267965894 --- # pere/whisper-small-nob-clr This model is a fine-tuned version of [pere/whisper-small-nob-clr](https://huggingface.co/pere/whisper-small-nob-clr) on the ncc_s dataset. It achieves the following results on the evaluation set: - Loss: 0.3284 - Wer: 15.0122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5975 | 0.33 | 1000 | 0.3354 | 15.7734 | | 0.5783 | 0.67 | 2000 | 0.3327 | 16.3520 | | 0.5788 | 1.0 | 3000 | 0.3284 | 15.0122 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2