File size: 4,835 Bytes
d4a92b9
5f885e1
 
 
d9a24cc
582537b
 
23fd420
3b0fa4c
d9a24cc
3b0fa4c
854e92c
 
d9a24cc
 
5f885e1
d9a24cc
23fd420
ddf00b0
3b0fa4c
23fd420
 
 
 
ddf00b0
23fd420
3b0fa4c
 
 
 
 
 
5f885e1
 
 
 
 
 
 
854e92c
5f885e1
582537b
854e92c
5f885e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

---
license: apache-2.0
tags:
- generated_from_trainer
- automatic-speech-recognition
- NbAiLab/NPSC
- robust-speech-event
- false
- nb-NO
- hf-asr-leaderboard
datasets:
- NbAiLab/NPSC
language:
- nb-NO
model-index:
- name: wav2vec2-xls-r-1b-npsc-bokmaal
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: NPSC
      type: NbAiLab/NPSC
      args: 16K_mp3_bokmaal
    metrics:
    - name: "Test (Bokm\xE5l) WER"
      type: wer
      value: 0.07901700231893541
    - name: "Test (Bokm\xE5l) CER"
      type: cer
      value: 0.029734583252347752
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-1b-npsc

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the [NbAiLab/NPSC (16K_mp3_bokmaal)](https://huggingface.co/datasets/NbAiLab/NPSC/viewer/16K_mp3_bokmaal/train) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1598
- WER: 0.0966

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 15.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.8361        | 0.32  | 500   | 0.6304          | 0.4970 |
| 0.5703        | 0.64  | 1000  | 0.3195          | 0.2775 |
| 0.5451        | 0.97  | 1500  | 0.2700          | 0.2246 |
| 0.47          | 1.29  | 2000  | 0.2564          | 0.2329 |
| 0.4063        | 1.61  | 2500  | 0.2459          | 0.2099 |
| 0.374         | 1.93  | 3000  | 0.2175          | 0.1894 |
| 0.3297        | 2.26  | 3500  | 0.2036          | 0.1755 |
| 0.3145        | 2.58  | 4000  | 0.1957          | 0.1757 |
| 0.3989        | 2.9   | 4500  | 0.1923          | 0.1723 |
| 0.271         | 3.22  | 5000  | 0.1889          | 0.1649 |
| 0.2758        | 3.55  | 5500  | 0.1768          | 0.1588 |
| 0.2683        | 3.87  | 6000  | 0.1720          | 0.1534 |
| 0.2341        | 4.19  | 6500  | 0.1689          | 0.1471 |
| 0.2316        | 4.51  | 7000  | 0.1706          | 0.1405 |
| 0.2383        | 4.84  | 7500  | 0.1637          | 0.1426 |
| 0.2148        | 5.16  | 8000  | 0.1584          | 0.1347 |
| 0.2085        | 5.48  | 8500  | 0.1601          | 0.1387 |
| 0.2944        | 5.8   | 9000  | 0.1566          | 0.1294 |
| 0.1944        | 6.13  | 9500  | 0.1494          | 0.1271 |
| 0.1853        | 6.45  | 10000 | 0.1561          | 0.1247 |
| 0.235         | 6.77  | 10500 | 0.1461          | 0.1215 |
| 0.2286        | 7.09  | 11000 | 0.1447          | 0.1167 |
| 0.1781        | 7.41  | 11500 | 0.1502          | 0.1199 |
| 0.1714        | 7.74  | 12000 | 0.1425          | 0.1179 |
| 0.1725        | 8.06  | 12500 | 0.1427          | 0.1173 |
| 0.143         | 8.38  | 13000 | 0.1448          | 0.1142 |
| 0.154         | 8.7   | 13500 | 0.1392          | 0.1104 |
| 0.1447        | 9.03  | 14000 | 0.1404          | 0.1094 |
| 0.1471        | 9.35  | 14500 | 0.1404          | 0.1088 |
| 0.1479        | 9.67  | 15000 | 0.1414          | 0.1133 |
| 0.1607        | 9.99  | 15500 | 0.1458          | 0.1171 |
| 0.166         | 10.32 | 16000 | 0.1652          | 0.1264 |
| 0.188         | 10.64 | 16500 | 0.1713          | 0.1322 |
| 0.1461        | 10.96 | 17000 | 0.1423          | 0.1111 |
| 0.1289        | 11.28 | 17500 | 0.1388          | 0.1097 |
| 0.1273        | 11.61 | 18000 | 0.1438          | 0.1074 |
| 0.1317        | 11.93 | 18500 | 0.1312          | 0.1066 |
| 0.1448        | 12.25 | 19000 | 0.1446          | 0.1042 |
| 0.1424        | 12.57 | 19500 | 0.1386          | 0.1015 |
| 0.1392        | 12.89 | 20000 | 0.1379          | 0.1005 |
| 0.1408        | 13.22 | 20500 | 0.1408          | 0.0992 |
| 0.1239        | 13.54 | 21000 | 0.1338          | 0.0968 |
| 0.1244        | 13.86 | 21500 | 0.1335          | 0.0957 |
| 0.1254        | 14.18 | 22000 | 0.1382          | 0.0950 |
| 0.1597        | 14.51 | 22500 | 0.1544          | 0.0970 |
| 0.1566        | 14.83 | 23000 | 0.1589          | 0.0963 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3.dev0
- Tokenizers 0.11.0