File size: 4,835 Bytes
d4a92b9 5f885e1 d9a24cc 582537b 23fd420 3b0fa4c d9a24cc 3b0fa4c 854e92c d9a24cc 5f885e1 d9a24cc 23fd420 ddf00b0 3b0fa4c 23fd420 ddf00b0 23fd420 3b0fa4c 5f885e1 854e92c 5f885e1 582537b 854e92c 5f885e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
tags:
- generated_from_trainer
- automatic-speech-recognition
- NbAiLab/NPSC
- robust-speech-event
- false
- nb-NO
- hf-asr-leaderboard
datasets:
- NbAiLab/NPSC
language:
- nb-NO
model-index:
- name: wav2vec2-xls-r-1b-npsc-bokmaal
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NPSC
type: NbAiLab/NPSC
args: 16K_mp3_bokmaal
metrics:
- name: "Test (Bokm\xE5l) WER"
type: wer
value: 0.07901700231893541
- name: "Test (Bokm\xE5l) CER"
type: cer
value: 0.029734583252347752
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-1b-npsc
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the [NbAiLab/NPSC (16K_mp3_bokmaal)](https://huggingface.co/datasets/NbAiLab/NPSC/viewer/16K_mp3_bokmaal/train) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1598
- WER: 0.0966
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.8361 | 0.32 | 500 | 0.6304 | 0.4970 |
| 0.5703 | 0.64 | 1000 | 0.3195 | 0.2775 |
| 0.5451 | 0.97 | 1500 | 0.2700 | 0.2246 |
| 0.47 | 1.29 | 2000 | 0.2564 | 0.2329 |
| 0.4063 | 1.61 | 2500 | 0.2459 | 0.2099 |
| 0.374 | 1.93 | 3000 | 0.2175 | 0.1894 |
| 0.3297 | 2.26 | 3500 | 0.2036 | 0.1755 |
| 0.3145 | 2.58 | 4000 | 0.1957 | 0.1757 |
| 0.3989 | 2.9 | 4500 | 0.1923 | 0.1723 |
| 0.271 | 3.22 | 5000 | 0.1889 | 0.1649 |
| 0.2758 | 3.55 | 5500 | 0.1768 | 0.1588 |
| 0.2683 | 3.87 | 6000 | 0.1720 | 0.1534 |
| 0.2341 | 4.19 | 6500 | 0.1689 | 0.1471 |
| 0.2316 | 4.51 | 7000 | 0.1706 | 0.1405 |
| 0.2383 | 4.84 | 7500 | 0.1637 | 0.1426 |
| 0.2148 | 5.16 | 8000 | 0.1584 | 0.1347 |
| 0.2085 | 5.48 | 8500 | 0.1601 | 0.1387 |
| 0.2944 | 5.8 | 9000 | 0.1566 | 0.1294 |
| 0.1944 | 6.13 | 9500 | 0.1494 | 0.1271 |
| 0.1853 | 6.45 | 10000 | 0.1561 | 0.1247 |
| 0.235 | 6.77 | 10500 | 0.1461 | 0.1215 |
| 0.2286 | 7.09 | 11000 | 0.1447 | 0.1167 |
| 0.1781 | 7.41 | 11500 | 0.1502 | 0.1199 |
| 0.1714 | 7.74 | 12000 | 0.1425 | 0.1179 |
| 0.1725 | 8.06 | 12500 | 0.1427 | 0.1173 |
| 0.143 | 8.38 | 13000 | 0.1448 | 0.1142 |
| 0.154 | 8.7 | 13500 | 0.1392 | 0.1104 |
| 0.1447 | 9.03 | 14000 | 0.1404 | 0.1094 |
| 0.1471 | 9.35 | 14500 | 0.1404 | 0.1088 |
| 0.1479 | 9.67 | 15000 | 0.1414 | 0.1133 |
| 0.1607 | 9.99 | 15500 | 0.1458 | 0.1171 |
| 0.166 | 10.32 | 16000 | 0.1652 | 0.1264 |
| 0.188 | 10.64 | 16500 | 0.1713 | 0.1322 |
| 0.1461 | 10.96 | 17000 | 0.1423 | 0.1111 |
| 0.1289 | 11.28 | 17500 | 0.1388 | 0.1097 |
| 0.1273 | 11.61 | 18000 | 0.1438 | 0.1074 |
| 0.1317 | 11.93 | 18500 | 0.1312 | 0.1066 |
| 0.1448 | 12.25 | 19000 | 0.1446 | 0.1042 |
| 0.1424 | 12.57 | 19500 | 0.1386 | 0.1015 |
| 0.1392 | 12.89 | 20000 | 0.1379 | 0.1005 |
| 0.1408 | 13.22 | 20500 | 0.1408 | 0.0992 |
| 0.1239 | 13.54 | 21000 | 0.1338 | 0.0968 |
| 0.1244 | 13.86 | 21500 | 0.1335 | 0.0957 |
| 0.1254 | 14.18 | 22000 | 0.1382 | 0.0950 |
| 0.1597 | 14.51 | 22500 | 0.1544 | 0.0970 |
| 0.1566 | 14.83 | 23000 | 0.1589 | 0.0963 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3.dev0
- Tokenizers 0.11.0
|