from transformers import ( AutoTokenizer, DataCollatorWithPadding, TrainingArguments, Trainer, AutoModelForSequenceClassification, ) from datasets import load_dataset, ClassLabel import numpy as np import evaluate import argparse import os from sklearn.metrics import classification_report, confusion_matrix def compute_metrics(eval_pred): precision_metric = evaluate.load("precision") recall_metric = evaluate.load("recall") f1_metric = evaluate.load("f1") accuracy_metric = evaluate.load("accuracy") logits, labels = eval_pred preds = np.round(logits.squeeze()).clip(0, 5).astype(int) labels = np.round(labels.squeeze()).astype(int) precision = precision_metric.compute( predictions=preds, references=labels, average="macro" )["precision"] recall = recall_metric.compute( predictions=preds, references=labels, average="macro" )["recall"] f1 = f1_metric.compute(predictions=preds, references=labels, average="macro")["f1"] accuracy = accuracy_metric.compute(predictions=preds, references=labels)["accuracy"] report = classification_report(labels, preds) cm = confusion_matrix(labels, preds) print("Validation Report:\n" + report) print("Confusion Matrix:\n" + str(cm)) return { "precision": precision, "recall": recall, "f1_macro": f1, "accuracy": accuracy, } def main(args): dataset = load_dataset( args.dataset_name, split="train", cache_dir="/home/perk/.cache/", num_proc=8 ) dataset = dataset.map( lambda x: {args.target_column: np.clip(int(x[args.target_column]), 0, 5)}, num_proc=8 ) dataset = dataset.cast_column( args.target_column, ClassLabel(names=[str(i) for i in range(6)]) ) dataset = dataset.train_test_split( train_size=0.9, seed=42, stratify_by_column=args.target_column ) tokenizer = AutoTokenizer.from_pretrained(args.base_model_name) def preprocess(examples): batch = tokenizer(examples["text"], truncation=True, max_length=512) batch["labels"] = np.float32(examples[args.target_column]) return batch dataset = dataset.map(preprocess, batched=True) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) model = AutoModelForSequenceClassification.from_pretrained(args.base_model_name, num_labels=1, classifier_dropout=0.0, hidden_dropout_prob=0.0) for param in model.bert.embeddings.parameters(): param.requires_grad = False for param in model.bert.encoder.parameters(): param.requires_grad = False training_args = TrainingArguments( output_dir=args.checkpoint_dir, evaluation_strategy="steps", save_strategy="steps", eval_steps=1000, save_steps=1000, logging_steps=100, learning_rate=3e-4, num_train_epochs=20, seed=0, per_device_train_batch_size=32, per_device_eval_batch_size=32, load_best_model_at_end=True, metric_for_best_model="f1_macro", greater_is_better=True, bf16=True, ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) trainer.train() trainer.save_model(os.path.join(args.checkpoint_dir, "final")) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--base_model_name", type=str, default="Snowflake/snowflake-arctic-embed-m") parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb-edu-llama3-annotations") parser.add_argument("--target_column", type=str, default="score") parser.add_argument("--checkpoint_dir", type=str, default="/fsx/anton/cosmopedia/edu_score/bert_snowflake_regression") args = parser.parse_args() main(args)