first
Browse files- .gitignore +1 -0
- .run_experiment2.sh.un~ +0 -0
- create_student_model.py +226 -0
- nb-distil-large-init/added_tokens.json +1611 -0
- nb-distil-large-init/config.json +288 -0
- nb-distil-large-init/flax_model.msgpack +3 -0
- nb-distil-large-init/generation_config.json +270 -0
- nb-distil-large-init/merges.txt +0 -0
- nb-distil-large-init/preprocessor_config.json +14 -0
- nb-distil-large-init/special_tokens_map.json +139 -0
- nb-distil-large-init/tokenizer_config.json +0 -0
- nb-distil-large-init/vocab.json +0 -0
- run_distillation.py +2172 -0
- run_experiment2.sh +41 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
wandb/
|
.run_experiment2.sh.un~
ADDED
Binary file (2.95 kB). View file
|
|
create_student_model.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Initialise a student Whisper model from a pre-trained teacher model for
|
18 |
+
teacher-student distillation.
|
19 |
+
"""
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
import copy
|
23 |
+
import logging
|
24 |
+
|
25 |
+
import jax
|
26 |
+
import numpy as np
|
27 |
+
from flax.core import freeze, unfreeze
|
28 |
+
from transformers import GenerationConfig, WhisperFeatureExtractor, WhisperProcessor
|
29 |
+
|
30 |
+
from distil_whisper import FlaxWhisperForConditionalGeneration
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
def parse_args():
|
37 |
+
parser = argparse.ArgumentParser(
|
38 |
+
description="Initialise a student Whisper model from a teacher model, copying the relevant layer weights and adjusting the processor as necessary."
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--teacher_checkpoint",
|
42 |
+
type=str,
|
43 |
+
required=True,
|
44 |
+
help="The HF Hub ID of the teacher checkpoint.",
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--subfolder",
|
48 |
+
type=str,
|
49 |
+
default="",
|
50 |
+
help="In case the relevant teacher weights are located inside a subfolder of the model repo on huggingface.co, you "
|
51 |
+
"can specify the folder name here.",
|
52 |
+
)
|
53 |
+
parser.add_argument(
|
54 |
+
"--encoder_layers",
|
55 |
+
type=int,
|
56 |
+
default=None,
|
57 |
+
help="Number of encoder layers to use in the student model. Defaults to all layers from the teacher.",
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--decoder_layers",
|
61 |
+
type=int,
|
62 |
+
default=2,
|
63 |
+
help="Number of decoder layers to use in the student model. Defaults to 2 layers.",
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--max_source_positions",
|
67 |
+
type=int,
|
68 |
+
default=None,
|
69 |
+
help="The maximum sequence length of log-mel filter-bank features that this model might ever be used with. Can "
|
70 |
+
"be used to create a student model with a shorter context length than the teacher model. Defaults to the number "
|
71 |
+
"of source positions in the teacher model (1500).",
|
72 |
+
)
|
73 |
+
parser.add_argument(
|
74 |
+
"--save_dir",
|
75 |
+
type=str,
|
76 |
+
required=True,
|
77 |
+
help="Where to save the student weights and processor.",
|
78 |
+
)
|
79 |
+
parser.add_argument(
|
80 |
+
"--push_to_hub",
|
81 |
+
type=bool,
|
82 |
+
required=False,
|
83 |
+
default=False,
|
84 |
+
help="Whether to push the student weights and processor to the Hub.",
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--cache_dir",
|
88 |
+
type=str,
|
89 |
+
default=None,
|
90 |
+
help="Where to store the pretrained models downloaded from huggingface.co",
|
91 |
+
)
|
92 |
+
|
93 |
+
args = parser.parse_args()
|
94 |
+
return args
|
95 |
+
|
96 |
+
|
97 |
+
def init_student_model_from_teacher(
|
98 |
+
teacher_checkpoint,
|
99 |
+
encoder_layers=None,
|
100 |
+
decoder_layers=2,
|
101 |
+
max_source_positions=None,
|
102 |
+
save_dir=None,
|
103 |
+
push_to_hub=None,
|
104 |
+
cache_dir=None,
|
105 |
+
subfolder="",
|
106 |
+
):
|
107 |
+
teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained(
|
108 |
+
teacher_checkpoint,
|
109 |
+
_do_init=False,
|
110 |
+
cache_dir=cache_dir,
|
111 |
+
subfolder=subfolder,
|
112 |
+
)
|
113 |
+
processor = WhisperProcessor.from_pretrained(teacher_checkpoint)
|
114 |
+
generation_config = GenerationConfig.from_pretrained(teacher_checkpoint)
|
115 |
+
|
116 |
+
teacher_config = teacher_model.config
|
117 |
+
teacher_encoder_layers = teacher_config.encoder_layers
|
118 |
+
teacher_decoder_layers = teacher_config.decoder_layers
|
119 |
+
|
120 |
+
student_config = copy.deepcopy(teacher_config)
|
121 |
+
student_config.update(
|
122 |
+
{
|
123 |
+
"encoder_layers": encoder_layers if encoder_layers is not None else teacher_encoder_layers,
|
124 |
+
"decoder_layers": decoder_layers,
|
125 |
+
"max_source_positions": (
|
126 |
+
max_source_positions if max_source_positions is not None else student_config.max_source_positions
|
127 |
+
),
|
128 |
+
}
|
129 |
+
)
|
130 |
+
|
131 |
+
encoder_mapping = np.linspace(0, teacher_encoder_layers - 1, student_config.encoder_layers, dtype=int)
|
132 |
+
encoder_mapping[-1] = teacher_encoder_layers - 1
|
133 |
+
|
134 |
+
encoder_map = {}
|
135 |
+
for student_layer, teacher_layer in enumerate(encoder_mapping):
|
136 |
+
encoder_map[str(teacher_layer)] = str(student_layer)
|
137 |
+
|
138 |
+
decoder_mapping = np.linspace(0, teacher_decoder_layers - 1, student_config.decoder_layers, dtype=int)
|
139 |
+
decoder_mapping[-1] = teacher_decoder_layers - 1
|
140 |
+
|
141 |
+
decoder_map = {}
|
142 |
+
for student_layer, teacher_layer in enumerate(decoder_mapping):
|
143 |
+
decoder_map[str(teacher_layer)] = str(student_layer)
|
144 |
+
|
145 |
+
# init the student params from the teacher model
|
146 |
+
student_params = unfreeze(teacher_params)
|
147 |
+
student_params["model"]["decoder"]["layers"] = {}
|
148 |
+
|
149 |
+
for layer in teacher_params["model"]["decoder"]["layers"]:
|
150 |
+
if layer in decoder_map:
|
151 |
+
# re-introduce pre-defined layers from the teacher
|
152 |
+
student_params["model"]["decoder"]["layers"][decoder_map[layer]] = teacher_params["model"]["decoder"][
|
153 |
+
"layers"
|
154 |
+
][layer]
|
155 |
+
|
156 |
+
if encoder_layers is not None:
|
157 |
+
student_params["model"]["encoder"]["layers"] = {}
|
158 |
+
for layer in teacher_params["model"]["encoder"]["layers"]:
|
159 |
+
if layer in encoder_map:
|
160 |
+
# re-introduce pre-defined layers from the teacher
|
161 |
+
student_params["model"]["encoder"]["layers"][encoder_map[layer]] = teacher_params["model"]["encoder"][
|
162 |
+
"layers"
|
163 |
+
][layer]
|
164 |
+
|
165 |
+
if max_source_positions is not None:
|
166 |
+
# slice the first MAX_SOURCE_POSITIONS embedding weights
|
167 |
+
student_params["model"]["encoder"]["embed_positions"]["embedding"] = teacher_params["model"]["encoder"][
|
168 |
+
"embed_positions"
|
169 |
+
]["embedding"][: student_config.max_source_positions, :]
|
170 |
+
# update the feature extractor to handle the new input length
|
171 |
+
chunk_length = int(student_config.max_source_positions * 2 / 100)
|
172 |
+
processor.feature_extractor = WhisperFeatureExtractor(chunk_length=chunk_length)
|
173 |
+
|
174 |
+
# remove the teacher params and model
|
175 |
+
del teacher_params, teacher_model
|
176 |
+
|
177 |
+
# save the converted weights and model
|
178 |
+
student_params = freeze(student_params)
|
179 |
+
student_model = FlaxWhisperForConditionalGeneration(student_config, _do_init=False)
|
180 |
+
|
181 |
+
if save_dir is not None:
|
182 |
+
student_model.save_pretrained(save_dir, params=student_params)
|
183 |
+
# we also need to correctly save the processor and generation config
|
184 |
+
processor.save_pretrained(save_dir)
|
185 |
+
generation_config.save_pretrained(save_dir)
|
186 |
+
|
187 |
+
# check we can do a forward pass with the saved model - first load the weights and processor
|
188 |
+
logger.info("Checking we can load the saved model...")
|
189 |
+
student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained(
|
190 |
+
save_dir,
|
191 |
+
_do_init=False,
|
192 |
+
)
|
193 |
+
processor = WhisperProcessor.from_pretrained(save_dir)
|
194 |
+
|
195 |
+
# define some random inputs
|
196 |
+
input_features = processor(np.ones(16000), sampling_rate=16000, return_tensors="np").input_features
|
197 |
+
decoder_start_token_id = student_model.config.decoder_start_token_id
|
198 |
+
decoder_input_ids = np.ones((input_features.shape[0], 1)) * decoder_start_token_id
|
199 |
+
|
200 |
+
# do a forward pass - outputs will be gibberish for the initialised model so we can't check them
|
201 |
+
logger.info("Checking we can run the converted model forward...")
|
202 |
+
_ = student_model(input_features, decoder_input_ids=decoder_input_ids, params=student_params).logits
|
203 |
+
logger.info("Conversion successful!")
|
204 |
+
|
205 |
+
if push_to_hub:
|
206 |
+
student_model.push_to_hub(save_dir, params=student_params)
|
207 |
+
processor.push_to_hub(save_dir)
|
208 |
+
generation_config.push_to_hub(save_dir)
|
209 |
+
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
args = parse_args()
|
213 |
+
|
214 |
+
# Set the verbosity to info of the logger - we only want one process per machine to log things on the screen
|
215 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
216 |
+
|
217 |
+
init_student_model_from_teacher(
|
218 |
+
teacher_checkpoint=args.teacher_checkpoint,
|
219 |
+
encoder_layers=args.encoder_layers,
|
220 |
+
decoder_layers=args.decoder_layers,
|
221 |
+
max_source_positions=args.max_source_positions,
|
222 |
+
save_dir=args.save_dir,
|
223 |
+
push_to_hub=args.push_to_hub,
|
224 |
+
cache_dir=args.cache_dir,
|
225 |
+
subfolder=args.subfolder,
|
226 |
+
)
|
nb-distil-large-init/added_tokens.json
ADDED
@@ -0,0 +1,1611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|0.00|>": 50365,
|
3 |
+
"<|0.02|>": 50366,
|
4 |
+
"<|0.04|>": 50367,
|
5 |
+
"<|0.06|>": 50368,
|
6 |
+
"<|0.08|>": 50369,
|
7 |
+
"<|0.10|>": 50370,
|
8 |
+
"<|0.12|>": 50371,
|
9 |
+
"<|0.14|>": 50372,
|
10 |
+
"<|0.16|>": 50373,
|
11 |
+
"<|0.18|>": 50374,
|
12 |
+
"<|0.20|>": 50375,
|
13 |
+
"<|0.22|>": 50376,
|
14 |
+
"<|0.24|>": 50377,
|
15 |
+
"<|0.26|>": 50378,
|
16 |
+
"<|0.28|>": 50379,
|
17 |
+
"<|0.30|>": 50380,
|
18 |
+
"<|0.32|>": 50381,
|
19 |
+
"<|0.34|>": 50382,
|
20 |
+
"<|0.36|>": 50383,
|
21 |
+
"<|0.38|>": 50384,
|
22 |
+
"<|0.40|>": 50385,
|
23 |
+
"<|0.42|>": 50386,
|
24 |
+
"<|0.44|>": 50387,
|
25 |
+
"<|0.46|>": 50388,
|
26 |
+
"<|0.48|>": 50389,
|
27 |
+
"<|0.50|>": 50390,
|
28 |
+
"<|0.52|>": 50391,
|
29 |
+
"<|0.54|>": 50392,
|
30 |
+
"<|0.56|>": 50393,
|
31 |
+
"<|0.58|>": 50394,
|
32 |
+
"<|0.60|>": 50395,
|
33 |
+
"<|0.62|>": 50396,
|
34 |
+
"<|0.64|>": 50397,
|
35 |
+
"<|0.66|>": 50398,
|
36 |
+
"<|0.68|>": 50399,
|
37 |
+
"<|0.70|>": 50400,
|
38 |
+
"<|0.72|>": 50401,
|
39 |
+
"<|0.74|>": 50402,
|
40 |
+
"<|0.76|>": 50403,
|
41 |
+
"<|0.78|>": 50404,
|
42 |
+
"<|0.80|>": 50405,
|
43 |
+
"<|0.82|>": 50406,
|
44 |
+
"<|0.84|>": 50407,
|
45 |
+
"<|0.86|>": 50408,
|
46 |
+
"<|0.88|>": 50409,
|
47 |
+
"<|0.90|>": 50410,
|
48 |
+
"<|0.92|>": 50411,
|
49 |
+
"<|0.94|>": 50412,
|
50 |
+
"<|0.96|>": 50413,
|
51 |
+
"<|0.98|>": 50414,
|
52 |
+
"<|1.00|>": 50415,
|
53 |
+
"<|1.02|>": 50416,
|
54 |
+
"<|1.04|>": 50417,
|
55 |
+
"<|1.06|>": 50418,
|
56 |
+
"<|1.08|>": 50419,
|
57 |
+
"<|1.10|>": 50420,
|
58 |
+
"<|1.12|>": 50421,
|
59 |
+
"<|1.14|>": 50422,
|
60 |
+
"<|1.16|>": 50423,
|
61 |
+
"<|1.18|>": 50424,
|
62 |
+
"<|1.20|>": 50425,
|
63 |
+
"<|1.22|>": 50426,
|
64 |
+
"<|1.24|>": 50427,
|
65 |
+
"<|1.26|>": 50428,
|
66 |
+
"<|1.28|>": 50429,
|
67 |
+
"<|1.30|>": 50430,
|
68 |
+
"<|1.32|>": 50431,
|
69 |
+
"<|1.34|>": 50432,
|
70 |
+
"<|1.36|>": 50433,
|
71 |
+
"<|1.38|>": 50434,
|
72 |
+
"<|1.40|>": 50435,
|
73 |
+
"<|1.42|>": 50436,
|
74 |
+
"<|1.44|>": 50437,
|
75 |
+
"<|1.46|>": 50438,
|
76 |
+
"<|1.48|>": 50439,
|
77 |
+
"<|1.50|>": 50440,
|
78 |
+
"<|1.52|>": 50441,
|
79 |
+
"<|1.54|>": 50442,
|
80 |
+
"<|1.56|>": 50443,
|
81 |
+
"<|1.58|>": 50444,
|
82 |
+
"<|1.60|>": 50445,
|
83 |
+
"<|1.62|>": 50446,
|
84 |
+
"<|1.64|>": 50447,
|
85 |
+
"<|1.66|>": 50448,
|
86 |
+
"<|1.68|>": 50449,
|
87 |
+
"<|1.70|>": 50450,
|
88 |
+
"<|1.72|>": 50451,
|
89 |
+
"<|1.74|>": 50452,
|
90 |
+
"<|1.76|>": 50453,
|
91 |
+
"<|1.78|>": 50454,
|
92 |
+
"<|1.80|>": 50455,
|
93 |
+
"<|1.82|>": 50456,
|
94 |
+
"<|1.84|>": 50457,
|
95 |
+
"<|1.86|>": 50458,
|
96 |
+
"<|1.88|>": 50459,
|
97 |
+
"<|1.90|>": 50460,
|
98 |
+
"<|1.92|>": 50461,
|
99 |
+
"<|1.94|>": 50462,
|
100 |
+
"<|1.96|>": 50463,
|
101 |
+
"<|1.98|>": 50464,
|
102 |
+
"<|10.00|>": 50865,
|
103 |
+
"<|10.02|>": 50866,
|
104 |
+
"<|10.04|>": 50867,
|
105 |
+
"<|10.06|>": 50868,
|
106 |
+
"<|10.08|>": 50869,
|
107 |
+
"<|10.10|>": 50870,
|
108 |
+
"<|10.12|>": 50871,
|
109 |
+
"<|10.14|>": 50872,
|
110 |
+
"<|10.16|>": 50873,
|
111 |
+
"<|10.18|>": 50874,
|
112 |
+
"<|10.20|>": 50875,
|
113 |
+
"<|10.22|>": 50876,
|
114 |
+
"<|10.24|>": 50877,
|
115 |
+
"<|10.26|>": 50878,
|
116 |
+
"<|10.28|>": 50879,
|
117 |
+
"<|10.30|>": 50880,
|
118 |
+
"<|10.32|>": 50881,
|
119 |
+
"<|10.34|>": 50882,
|
120 |
+
"<|10.36|>": 50883,
|
121 |
+
"<|10.38|>": 50884,
|
122 |
+
"<|10.40|>": 50885,
|
123 |
+
"<|10.42|>": 50886,
|
124 |
+
"<|10.44|>": 50887,
|
125 |
+
"<|10.46|>": 50888,
|
126 |
+
"<|10.48|>": 50889,
|
127 |
+
"<|10.50|>": 50890,
|
128 |
+
"<|10.52|>": 50891,
|
129 |
+
"<|10.54|>": 50892,
|
130 |
+
"<|10.56|>": 50893,
|
131 |
+
"<|10.58|>": 50894,
|
132 |
+
"<|10.60|>": 50895,
|
133 |
+
"<|10.62|>": 50896,
|
134 |
+
"<|10.64|>": 50897,
|
135 |
+
"<|10.66|>": 50898,
|
136 |
+
"<|10.68|>": 50899,
|
137 |
+
"<|10.70|>": 50900,
|
138 |
+
"<|10.72|>": 50901,
|
139 |
+
"<|10.74|>": 50902,
|
140 |
+
"<|10.76|>": 50903,
|
141 |
+
"<|10.78|>": 50904,
|
142 |
+
"<|10.80|>": 50905,
|
143 |
+
"<|10.82|>": 50906,
|
144 |
+
"<|10.84|>": 50907,
|
145 |
+
"<|10.86|>": 50908,
|
146 |
+
"<|10.88|>": 50909,
|
147 |
+
"<|10.90|>": 50910,
|
148 |
+
"<|10.92|>": 50911,
|
149 |
+
"<|10.94|>": 50912,
|
150 |
+
"<|10.96|>": 50913,
|
151 |
+
"<|10.98|>": 50914,
|
152 |
+
"<|11.00|>": 50915,
|
153 |
+
"<|11.02|>": 50916,
|
154 |
+
"<|11.04|>": 50917,
|
155 |
+
"<|11.06|>": 50918,
|
156 |
+
"<|11.08|>": 50919,
|
157 |
+
"<|11.10|>": 50920,
|
158 |
+
"<|11.12|>": 50921,
|
159 |
+
"<|11.14|>": 50922,
|
160 |
+
"<|11.16|>": 50923,
|
161 |
+
"<|11.18|>": 50924,
|
162 |
+
"<|11.20|>": 50925,
|
163 |
+
"<|11.22|>": 50926,
|
164 |
+
"<|11.24|>": 50927,
|
165 |
+
"<|11.26|>": 50928,
|
166 |
+
"<|11.28|>": 50929,
|
167 |
+
"<|11.30|>": 50930,
|
168 |
+
"<|11.32|>": 50931,
|
169 |
+
"<|11.34|>": 50932,
|
170 |
+
"<|11.36|>": 50933,
|
171 |
+
"<|11.38|>": 50934,
|
172 |
+
"<|11.40|>": 50935,
|
173 |
+
"<|11.42|>": 50936,
|
174 |
+
"<|11.44|>": 50937,
|
175 |
+
"<|11.46|>": 50938,
|
176 |
+
"<|11.48|>": 50939,
|
177 |
+
"<|11.50|>": 50940,
|
178 |
+
"<|11.52|>": 50941,
|
179 |
+
"<|11.54|>": 50942,
|
180 |
+
"<|11.56|>": 50943,
|
181 |
+
"<|11.58|>": 50944,
|
182 |
+
"<|11.60|>": 50945,
|
183 |
+
"<|11.62|>": 50946,
|
184 |
+
"<|11.64|>": 50947,
|
185 |
+
"<|11.66|>": 50948,
|
186 |
+
"<|11.68|>": 50949,
|
187 |
+
"<|11.70|>": 50950,
|
188 |
+
"<|11.72|>": 50951,
|
189 |
+
"<|11.74|>": 50952,
|
190 |
+
"<|11.76|>": 50953,
|
191 |
+
"<|11.78|>": 50954,
|
192 |
+
"<|11.80|>": 50955,
|
193 |
+
"<|11.82|>": 50956,
|
194 |
+
"<|11.84|>": 50957,
|
195 |
+
"<|11.86|>": 50958,
|
196 |
+
"<|11.88|>": 50959,
|
197 |
+
"<|11.90|>": 50960,
|
198 |
+
"<|11.92|>": 50961,
|
199 |
+
"<|11.94|>": 50962,
|
200 |
+
"<|11.96|>": 50963,
|
201 |
+
"<|11.98|>": 50964,
|
202 |
+
"<|12.00|>": 50965,
|
203 |
+
"<|12.02|>": 50966,
|
204 |
+
"<|12.04|>": 50967,
|
205 |
+
"<|12.06|>": 50968,
|
206 |
+
"<|12.08|>": 50969,
|
207 |
+
"<|12.10|>": 50970,
|
208 |
+
"<|12.12|>": 50971,
|
209 |
+
"<|12.14|>": 50972,
|
210 |
+
"<|12.16|>": 50973,
|
211 |
+
"<|12.18|>": 50974,
|
212 |
+
"<|12.20|>": 50975,
|
213 |
+
"<|12.22|>": 50976,
|
214 |
+
"<|12.24|>": 50977,
|
215 |
+
"<|12.26|>": 50978,
|
216 |
+
"<|12.28|>": 50979,
|
217 |
+
"<|12.30|>": 50980,
|
218 |
+
"<|12.32|>": 50981,
|
219 |
+
"<|12.34|>": 50982,
|
220 |
+
"<|12.36|>": 50983,
|
221 |
+
"<|12.38|>": 50984,
|
222 |
+
"<|12.40|>": 50985,
|
223 |
+
"<|12.42|>": 50986,
|
224 |
+
"<|12.44|>": 50987,
|
225 |
+
"<|12.46|>": 50988,
|
226 |
+
"<|12.48|>": 50989,
|
227 |
+
"<|12.50|>": 50990,
|
228 |
+
"<|12.52|>": 50991,
|
229 |
+
"<|12.54|>": 50992,
|
230 |
+
"<|12.56|>": 50993,
|
231 |
+
"<|12.58|>": 50994,
|
232 |
+
"<|12.60|>": 50995,
|
233 |
+
"<|12.62|>": 50996,
|
234 |
+
"<|12.64|>": 50997,
|
235 |
+
"<|12.66|>": 50998,
|
236 |
+
"<|12.68|>": 50999,
|
237 |
+
"<|12.70|>": 51000,
|
238 |
+
"<|12.72|>": 51001,
|
239 |
+
"<|12.74|>": 51002,
|
240 |
+
"<|12.76|>": 51003,
|
241 |
+
"<|12.78|>": 51004,
|
242 |
+
"<|12.80|>": 51005,
|
243 |
+
"<|12.82|>": 51006,
|
244 |
+
"<|12.84|>": 51007,
|
245 |
+
"<|12.86|>": 51008,
|
246 |
+
"<|12.88|>": 51009,
|
247 |
+
"<|12.90|>": 51010,
|
248 |
+
"<|12.92|>": 51011,
|
249 |
+
"<|12.94|>": 51012,
|
250 |
+
"<|12.96|>": 51013,
|
251 |
+
"<|12.98|>": 51014,
|
252 |
+
"<|13.00|>": 51015,
|
253 |
+
"<|13.02|>": 51016,
|
254 |
+
"<|13.04|>": 51017,
|
255 |
+
"<|13.06|>": 51018,
|
256 |
+
"<|13.08|>": 51019,
|
257 |
+
"<|13.10|>": 51020,
|
258 |
+
"<|13.12|>": 51021,
|
259 |
+
"<|13.14|>": 51022,
|
260 |
+
"<|13.16|>": 51023,
|
261 |
+
"<|13.18|>": 51024,
|
262 |
+
"<|13.20|>": 51025,
|
263 |
+
"<|13.22|>": 51026,
|
264 |
+
"<|13.24|>": 51027,
|
265 |
+
"<|13.26|>": 51028,
|
266 |
+
"<|13.28|>": 51029,
|
267 |
+
"<|13.30|>": 51030,
|
268 |
+
"<|13.32|>": 51031,
|
269 |
+
"<|13.34|>": 51032,
|
270 |
+
"<|13.36|>": 51033,
|
271 |
+
"<|13.38|>": 51034,
|
272 |
+
"<|13.40|>": 51035,
|
273 |
+
"<|13.42|>": 51036,
|
274 |
+
"<|13.44|>": 51037,
|
275 |
+
"<|13.46|>": 51038,
|
276 |
+
"<|13.48|>": 51039,
|
277 |
+
"<|13.50|>": 51040,
|
278 |
+
"<|13.52|>": 51041,
|
279 |
+
"<|13.54|>": 51042,
|
280 |
+
"<|13.56|>": 51043,
|
281 |
+
"<|13.58|>": 51044,
|
282 |
+
"<|13.60|>": 51045,
|
283 |
+
"<|13.62|>": 51046,
|
284 |
+
"<|13.64|>": 51047,
|
285 |
+
"<|13.66|>": 51048,
|
286 |
+
"<|13.68|>": 51049,
|
287 |
+
"<|13.70|>": 51050,
|
288 |
+
"<|13.72|>": 51051,
|
289 |
+
"<|13.74|>": 51052,
|
290 |
+
"<|13.76|>": 51053,
|
291 |
+
"<|13.78|>": 51054,
|
292 |
+
"<|13.80|>": 51055,
|
293 |
+
"<|13.82|>": 51056,
|
294 |
+
"<|13.84|>": 51057,
|
295 |
+
"<|13.86|>": 51058,
|
296 |
+
"<|13.88|>": 51059,
|
297 |
+
"<|13.90|>": 51060,
|
298 |
+
"<|13.92|>": 51061,
|
299 |
+
"<|13.94|>": 51062,
|
300 |
+
"<|13.96|>": 51063,
|
301 |
+
"<|13.98|>": 51064,
|
302 |
+
"<|14.00|>": 51065,
|
303 |
+
"<|14.02|>": 51066,
|
304 |
+
"<|14.04|>": 51067,
|
305 |
+
"<|14.06|>": 51068,
|
306 |
+
"<|14.08|>": 51069,
|
307 |
+
"<|14.10|>": 51070,
|
308 |
+
"<|14.12|>": 51071,
|
309 |
+
"<|14.14|>": 51072,
|
310 |
+
"<|14.16|>": 51073,
|
311 |
+
"<|14.18|>": 51074,
|
312 |
+
"<|14.20|>": 51075,
|
313 |
+
"<|14.22|>": 51076,
|
314 |
+
"<|14.24|>": 51077,
|
315 |
+
"<|14.26|>": 51078,
|
316 |
+
"<|14.28|>": 51079,
|
317 |
+
"<|14.30|>": 51080,
|
318 |
+
"<|14.32|>": 51081,
|
319 |
+
"<|14.34|>": 51082,
|
320 |
+
"<|14.36|>": 51083,
|
321 |
+
"<|14.38|>": 51084,
|
322 |
+
"<|14.40|>": 51085,
|
323 |
+
"<|14.42|>": 51086,
|
324 |
+
"<|14.44|>": 51087,
|
325 |
+
"<|14.46|>": 51088,
|
326 |
+
"<|14.48|>": 51089,
|
327 |
+
"<|14.50|>": 51090,
|
328 |
+
"<|14.52|>": 51091,
|
329 |
+
"<|14.54|>": 51092,
|
330 |
+
"<|14.56|>": 51093,
|
331 |
+
"<|14.58|>": 51094,
|
332 |
+
"<|14.60|>": 51095,
|
333 |
+
"<|14.62|>": 51096,
|
334 |
+
"<|14.64|>": 51097,
|
335 |
+
"<|14.66|>": 51098,
|
336 |
+
"<|14.68|>": 51099,
|
337 |
+
"<|14.70|>": 51100,
|
338 |
+
"<|14.72|>": 51101,
|
339 |
+
"<|14.74|>": 51102,
|
340 |
+
"<|14.76|>": 51103,
|
341 |
+
"<|14.78|>": 51104,
|
342 |
+
"<|14.80|>": 51105,
|
343 |
+
"<|14.82|>": 51106,
|
344 |
+
"<|14.84|>": 51107,
|
345 |
+
"<|14.86|>": 51108,
|
346 |
+
"<|14.88|>": 51109,
|
347 |
+
"<|14.90|>": 51110,
|
348 |
+
"<|14.92|>": 51111,
|
349 |
+
"<|14.94|>": 51112,
|
350 |
+
"<|14.96|>": 51113,
|
351 |
+
"<|14.98|>": 51114,
|
352 |
+
"<|15.00|>": 51115,
|
353 |
+
"<|15.02|>": 51116,
|
354 |
+
"<|15.04|>": 51117,
|
355 |
+
"<|15.06|>": 51118,
|
356 |
+
"<|15.08|>": 51119,
|
357 |
+
"<|15.10|>": 51120,
|
358 |
+
"<|15.12|>": 51121,
|
359 |
+
"<|15.14|>": 51122,
|
360 |
+
"<|15.16|>": 51123,
|
361 |
+
"<|15.18|>": 51124,
|
362 |
+
"<|15.20|>": 51125,
|
363 |
+
"<|15.22|>": 51126,
|
364 |
+
"<|15.24|>": 51127,
|
365 |
+
"<|15.26|>": 51128,
|
366 |
+
"<|15.28|>": 51129,
|
367 |
+
"<|15.30|>": 51130,
|
368 |
+
"<|15.32|>": 51131,
|
369 |
+
"<|15.34|>": 51132,
|
370 |
+
"<|15.36|>": 51133,
|
371 |
+
"<|15.38|>": 51134,
|
372 |
+
"<|15.40|>": 51135,
|
373 |
+
"<|15.42|>": 51136,
|
374 |
+
"<|15.44|>": 51137,
|
375 |
+
"<|15.46|>": 51138,
|
376 |
+
"<|15.48|>": 51139,
|
377 |
+
"<|15.50|>": 51140,
|
378 |
+
"<|15.52|>": 51141,
|
379 |
+
"<|15.54|>": 51142,
|
380 |
+
"<|15.56|>": 51143,
|
381 |
+
"<|15.58|>": 51144,
|
382 |
+
"<|15.60|>": 51145,
|
383 |
+
"<|15.62|>": 51146,
|
384 |
+
"<|15.64|>": 51147,
|
385 |
+
"<|15.66|>": 51148,
|
386 |
+
"<|15.68|>": 51149,
|
387 |
+
"<|15.70|>": 51150,
|
388 |
+
"<|15.72|>": 51151,
|
389 |
+
"<|15.74|>": 51152,
|
390 |
+
"<|15.76|>": 51153,
|
391 |
+
"<|15.78|>": 51154,
|
392 |
+
"<|15.80|>": 51155,
|
393 |
+
"<|15.82|>": 51156,
|
394 |
+
"<|15.84|>": 51157,
|
395 |
+
"<|15.86|>": 51158,
|
396 |
+
"<|15.88|>": 51159,
|
397 |
+
"<|15.90|>": 51160,
|
398 |
+
"<|15.92|>": 51161,
|
399 |
+
"<|15.94|>": 51162,
|
400 |
+
"<|15.96|>": 51163,
|
401 |
+
"<|15.98|>": 51164,
|
402 |
+
"<|16.00|>": 51165,
|
403 |
+
"<|16.02|>": 51166,
|
404 |
+
"<|16.04|>": 51167,
|
405 |
+
"<|16.06|>": 51168,
|
406 |
+
"<|16.08|>": 51169,
|
407 |
+
"<|16.10|>": 51170,
|
408 |
+
"<|16.12|>": 51171,
|
409 |
+
"<|16.14|>": 51172,
|
410 |
+
"<|16.16|>": 51173,
|
411 |
+
"<|16.18|>": 51174,
|
412 |
+
"<|16.20|>": 51175,
|
413 |
+
"<|16.22|>": 51176,
|
414 |
+
"<|16.24|>": 51177,
|
415 |
+
"<|16.26|>": 51178,
|
416 |
+
"<|16.28|>": 51179,
|
417 |
+
"<|16.30|>": 51180,
|
418 |
+
"<|16.32|>": 51181,
|
419 |
+
"<|16.34|>": 51182,
|
420 |
+
"<|16.36|>": 51183,
|
421 |
+
"<|16.38|>": 51184,
|
422 |
+
"<|16.40|>": 51185,
|
423 |
+
"<|16.42|>": 51186,
|
424 |
+
"<|16.44|>": 51187,
|
425 |
+
"<|16.46|>": 51188,
|
426 |
+
"<|16.48|>": 51189,
|
427 |
+
"<|16.50|>": 51190,
|
428 |
+
"<|16.52|>": 51191,
|
429 |
+
"<|16.54|>": 51192,
|
430 |
+
"<|16.56|>": 51193,
|
431 |
+
"<|16.58|>": 51194,
|
432 |
+
"<|16.60|>": 51195,
|
433 |
+
"<|16.62|>": 51196,
|
434 |
+
"<|16.64|>": 51197,
|
435 |
+
"<|16.66|>": 51198,
|
436 |
+
"<|16.68|>": 51199,
|
437 |
+
"<|16.70|>": 51200,
|
438 |
+
"<|16.72|>": 51201,
|
439 |
+
"<|16.74|>": 51202,
|
440 |
+
"<|16.76|>": 51203,
|
441 |
+
"<|16.78|>": 51204,
|
442 |
+
"<|16.80|>": 51205,
|
443 |
+
"<|16.82|>": 51206,
|
444 |
+
"<|16.84|>": 51207,
|
445 |
+
"<|16.86|>": 51208,
|
446 |
+
"<|16.88|>": 51209,
|
447 |
+
"<|16.90|>": 51210,
|
448 |
+
"<|16.92|>": 51211,
|
449 |
+
"<|16.94|>": 51212,
|
450 |
+
"<|16.96|>": 51213,
|
451 |
+
"<|16.98|>": 51214,
|
452 |
+
"<|17.00|>": 51215,
|
453 |
+
"<|17.02|>": 51216,
|
454 |
+
"<|17.04|>": 51217,
|
455 |
+
"<|17.06|>": 51218,
|
456 |
+
"<|17.08|>": 51219,
|
457 |
+
"<|17.10|>": 51220,
|
458 |
+
"<|17.12|>": 51221,
|
459 |
+
"<|17.14|>": 51222,
|
460 |
+
"<|17.16|>": 51223,
|
461 |
+
"<|17.18|>": 51224,
|
462 |
+
"<|17.20|>": 51225,
|
463 |
+
"<|17.22|>": 51226,
|
464 |
+
"<|17.24|>": 51227,
|
465 |
+
"<|17.26|>": 51228,
|
466 |
+
"<|17.28|>": 51229,
|
467 |
+
"<|17.30|>": 51230,
|
468 |
+
"<|17.32|>": 51231,
|
469 |
+
"<|17.34|>": 51232,
|
470 |
+
"<|17.36|>": 51233,
|
471 |
+
"<|17.38|>": 51234,
|
472 |
+
"<|17.40|>": 51235,
|
473 |
+
"<|17.42|>": 51236,
|
474 |
+
"<|17.44|>": 51237,
|
475 |
+
"<|17.46|>": 51238,
|
476 |
+
"<|17.48|>": 51239,
|
477 |
+
"<|17.50|>": 51240,
|
478 |
+
"<|17.52|>": 51241,
|
479 |
+
"<|17.54|>": 51242,
|
480 |
+
"<|17.56|>": 51243,
|
481 |
+
"<|17.58|>": 51244,
|
482 |
+
"<|17.60|>": 51245,
|
483 |
+
"<|17.62|>": 51246,
|
484 |
+
"<|17.64|>": 51247,
|
485 |
+
"<|17.66|>": 51248,
|
486 |
+
"<|17.68|>": 51249,
|
487 |
+
"<|17.70|>": 51250,
|
488 |
+
"<|17.72|>": 51251,
|
489 |
+
"<|17.74|>": 51252,
|
490 |
+
"<|17.76|>": 51253,
|
491 |
+
"<|17.78|>": 51254,
|
492 |
+
"<|17.80|>": 51255,
|
493 |
+
"<|17.82|>": 51256,
|
494 |
+
"<|17.84|>": 51257,
|
495 |
+
"<|17.86|>": 51258,
|
496 |
+
"<|17.88|>": 51259,
|
497 |
+
"<|17.90|>": 51260,
|
498 |
+
"<|17.92|>": 51261,
|
499 |
+
"<|17.94|>": 51262,
|
500 |
+
"<|17.96|>": 51263,
|
501 |
+
"<|17.98|>": 51264,
|
502 |
+
"<|18.00|>": 51265,
|
503 |
+
"<|18.02|>": 51266,
|
504 |
+
"<|18.04|>": 51267,
|
505 |
+
"<|18.06|>": 51268,
|
506 |
+
"<|18.08|>": 51269,
|
507 |
+
"<|18.10|>": 51270,
|
508 |
+
"<|18.12|>": 51271,
|
509 |
+
"<|18.14|>": 51272,
|
510 |
+
"<|18.16|>": 51273,
|
511 |
+
"<|18.18|>": 51274,
|
512 |
+
"<|18.20|>": 51275,
|
513 |
+
"<|18.22|>": 51276,
|
514 |
+
"<|18.24|>": 51277,
|
515 |
+
"<|18.26|>": 51278,
|
516 |
+
"<|18.28|>": 51279,
|
517 |
+
"<|18.30|>": 51280,
|
518 |
+
"<|18.32|>": 51281,
|
519 |
+
"<|18.34|>": 51282,
|
520 |
+
"<|18.36|>": 51283,
|
521 |
+
"<|18.38|>": 51284,
|
522 |
+
"<|18.40|>": 51285,
|
523 |
+
"<|18.42|>": 51286,
|
524 |
+
"<|18.44|>": 51287,
|
525 |
+
"<|18.46|>": 51288,
|
526 |
+
"<|18.48|>": 51289,
|
527 |
+
"<|18.50|>": 51290,
|
528 |
+
"<|18.52|>": 51291,
|
529 |
+
"<|18.54|>": 51292,
|
530 |
+
"<|18.56|>": 51293,
|
531 |
+
"<|18.58|>": 51294,
|
532 |
+
"<|18.60|>": 51295,
|
533 |
+
"<|18.62|>": 51296,
|
534 |
+
"<|18.64|>": 51297,
|
535 |
+
"<|18.66|>": 51298,
|
536 |
+
"<|18.68|>": 51299,
|
537 |
+
"<|18.70|>": 51300,
|
538 |
+
"<|18.72|>": 51301,
|
539 |
+
"<|18.74|>": 51302,
|
540 |
+
"<|18.76|>": 51303,
|
541 |
+
"<|18.78|>": 51304,
|
542 |
+
"<|18.80|>": 51305,
|
543 |
+
"<|18.82|>": 51306,
|
544 |
+
"<|18.84|>": 51307,
|
545 |
+
"<|18.86|>": 51308,
|
546 |
+
"<|18.88|>": 51309,
|
547 |
+
"<|18.90|>": 51310,
|
548 |
+
"<|18.92|>": 51311,
|
549 |
+
"<|18.94|>": 51312,
|
550 |
+
"<|18.96|>": 51313,
|
551 |
+
"<|18.98|>": 51314,
|
552 |
+
"<|19.00|>": 51315,
|
553 |
+
"<|19.02|>": 51316,
|
554 |
+
"<|19.04|>": 51317,
|
555 |
+
"<|19.06|>": 51318,
|
556 |
+
"<|19.08|>": 51319,
|
557 |
+
"<|19.10|>": 51320,
|
558 |
+
"<|19.12|>": 51321,
|
559 |
+
"<|19.14|>": 51322,
|
560 |
+
"<|19.16|>": 51323,
|
561 |
+
"<|19.18|>": 51324,
|
562 |
+
"<|19.20|>": 51325,
|
563 |
+
"<|19.22|>": 51326,
|
564 |
+
"<|19.24|>": 51327,
|
565 |
+
"<|19.26|>": 51328,
|
566 |
+
"<|19.28|>": 51329,
|
567 |
+
"<|19.30|>": 51330,
|
568 |
+
"<|19.32|>": 51331,
|
569 |
+
"<|19.34|>": 51332,
|
570 |
+
"<|19.36|>": 51333,
|
571 |
+
"<|19.38|>": 51334,
|
572 |
+
"<|19.40|>": 51335,
|
573 |
+
"<|19.42|>": 51336,
|
574 |
+
"<|19.44|>": 51337,
|
575 |
+
"<|19.46|>": 51338,
|
576 |
+
"<|19.48|>": 51339,
|
577 |
+
"<|19.50|>": 51340,
|
578 |
+
"<|19.52|>": 51341,
|
579 |
+
"<|19.54|>": 51342,
|
580 |
+
"<|19.56|>": 51343,
|
581 |
+
"<|19.58|>": 51344,
|
582 |
+
"<|19.60|>": 51345,
|
583 |
+
"<|19.62|>": 51346,
|
584 |
+
"<|19.64|>": 51347,
|
585 |
+
"<|19.66|>": 51348,
|
586 |
+
"<|19.68|>": 51349,
|
587 |
+
"<|19.70|>": 51350,
|
588 |
+
"<|19.72|>": 51351,
|
589 |
+
"<|19.74|>": 51352,
|
590 |
+
"<|19.76|>": 51353,
|
591 |
+
"<|19.78|>": 51354,
|
592 |
+
"<|19.80|>": 51355,
|
593 |
+
"<|19.82|>": 51356,
|
594 |
+
"<|19.84|>": 51357,
|
595 |
+
"<|19.86|>": 51358,
|
596 |
+
"<|19.88|>": 51359,
|
597 |
+
"<|19.90|>": 51360,
|
598 |
+
"<|19.92|>": 51361,
|
599 |
+
"<|19.94|>": 51362,
|
600 |
+
"<|19.96|>": 51363,
|
601 |
+
"<|19.98|>": 51364,
|
602 |
+
"<|2.00|>": 50465,
|
603 |
+
"<|2.02|>": 50466,
|
604 |
+
"<|2.04|>": 50467,
|
605 |
+
"<|2.06|>": 50468,
|
606 |
+
"<|2.08|>": 50469,
|
607 |
+
"<|2.10|>": 50470,
|
608 |
+
"<|2.12|>": 50471,
|
609 |
+
"<|2.14|>": 50472,
|
610 |
+
"<|2.16|>": 50473,
|
611 |
+
"<|2.18|>": 50474,
|
612 |
+
"<|2.20|>": 50475,
|
613 |
+
"<|2.22|>": 50476,
|
614 |
+
"<|2.24|>": 50477,
|
615 |
+
"<|2.26|>": 50478,
|
616 |
+
"<|2.28|>": 50479,
|
617 |
+
"<|2.30|>": 50480,
|
618 |
+
"<|2.32|>": 50481,
|
619 |
+
"<|2.34|>": 50482,
|
620 |
+
"<|2.36|>": 50483,
|
621 |
+
"<|2.38|>": 50484,
|
622 |
+
"<|2.40|>": 50485,
|
623 |
+
"<|2.42|>": 50486,
|
624 |
+
"<|2.44|>": 50487,
|
625 |
+
"<|2.46|>": 50488,
|
626 |
+
"<|2.48|>": 50489,
|
627 |
+
"<|2.50|>": 50490,
|
628 |
+
"<|2.52|>": 50491,
|
629 |
+
"<|2.54|>": 50492,
|
630 |
+
"<|2.56|>": 50493,
|
631 |
+
"<|2.58|>": 50494,
|
632 |
+
"<|2.60|>": 50495,
|
633 |
+
"<|2.62|>": 50496,
|
634 |
+
"<|2.64|>": 50497,
|
635 |
+
"<|2.66|>": 50498,
|
636 |
+
"<|2.68|>": 50499,
|
637 |
+
"<|2.70|>": 50500,
|
638 |
+
"<|2.72|>": 50501,
|
639 |
+
"<|2.74|>": 50502,
|
640 |
+
"<|2.76|>": 50503,
|
641 |
+
"<|2.78|>": 50504,
|
642 |
+
"<|2.80|>": 50505,
|
643 |
+
"<|2.82|>": 50506,
|
644 |
+
"<|2.84|>": 50507,
|
645 |
+
"<|2.86|>": 50508,
|
646 |
+
"<|2.88|>": 50509,
|
647 |
+
"<|2.90|>": 50510,
|
648 |
+
"<|2.92|>": 50511,
|
649 |
+
"<|2.94|>": 50512,
|
650 |
+
"<|2.96|>": 50513,
|
651 |
+
"<|2.98|>": 50514,
|
652 |
+
"<|20.00|>": 51365,
|
653 |
+
"<|20.02|>": 51366,
|
654 |
+
"<|20.04|>": 51367,
|
655 |
+
"<|20.06|>": 51368,
|
656 |
+
"<|20.08|>": 51369,
|
657 |
+
"<|20.10|>": 51370,
|
658 |
+
"<|20.12|>": 51371,
|
659 |
+
"<|20.14|>": 51372,
|
660 |
+
"<|20.16|>": 51373,
|
661 |
+
"<|20.18|>": 51374,
|
662 |
+
"<|20.20|>": 51375,
|
663 |
+
"<|20.22|>": 51376,
|
664 |
+
"<|20.24|>": 51377,
|
665 |
+
"<|20.26|>": 51378,
|
666 |
+
"<|20.28|>": 51379,
|
667 |
+
"<|20.30|>": 51380,
|
668 |
+
"<|20.32|>": 51381,
|
669 |
+
"<|20.34|>": 51382,
|
670 |
+
"<|20.36|>": 51383,
|
671 |
+
"<|20.38|>": 51384,
|
672 |
+
"<|20.40|>": 51385,
|
673 |
+
"<|20.42|>": 51386,
|
674 |
+
"<|20.44|>": 51387,
|
675 |
+
"<|20.46|>": 51388,
|
676 |
+
"<|20.48|>": 51389,
|
677 |
+
"<|20.50|>": 51390,
|
678 |
+
"<|20.52|>": 51391,
|
679 |
+
"<|20.54|>": 51392,
|
680 |
+
"<|20.56|>": 51393,
|
681 |
+
"<|20.58|>": 51394,
|
682 |
+
"<|20.60|>": 51395,
|
683 |
+
"<|20.62|>": 51396,
|
684 |
+
"<|20.64|>": 51397,
|
685 |
+
"<|20.66|>": 51398,
|
686 |
+
"<|20.68|>": 51399,
|
687 |
+
"<|20.70|>": 51400,
|
688 |
+
"<|20.72|>": 51401,
|
689 |
+
"<|20.74|>": 51402,
|
690 |
+
"<|20.76|>": 51403,
|
691 |
+
"<|20.78|>": 51404,
|
692 |
+
"<|20.80|>": 51405,
|
693 |
+
"<|20.82|>": 51406,
|
694 |
+
"<|20.84|>": 51407,
|
695 |
+
"<|20.86|>": 51408,
|
696 |
+
"<|20.88|>": 51409,
|
697 |
+
"<|20.90|>": 51410,
|
698 |
+
"<|20.92|>": 51411,
|
699 |
+
"<|20.94|>": 51412,
|
700 |
+
"<|20.96|>": 51413,
|
701 |
+
"<|20.98|>": 51414,
|
702 |
+
"<|21.00|>": 51415,
|
703 |
+
"<|21.02|>": 51416,
|
704 |
+
"<|21.04|>": 51417,
|
705 |
+
"<|21.06|>": 51418,
|
706 |
+
"<|21.08|>": 51419,
|
707 |
+
"<|21.10|>": 51420,
|
708 |
+
"<|21.12|>": 51421,
|
709 |
+
"<|21.14|>": 51422,
|
710 |
+
"<|21.16|>": 51423,
|
711 |
+
"<|21.18|>": 51424,
|
712 |
+
"<|21.20|>": 51425,
|
713 |
+
"<|21.22|>": 51426,
|
714 |
+
"<|21.24|>": 51427,
|
715 |
+
"<|21.26|>": 51428,
|
716 |
+
"<|21.28|>": 51429,
|
717 |
+
"<|21.30|>": 51430,
|
718 |
+
"<|21.32|>": 51431,
|
719 |
+
"<|21.34|>": 51432,
|
720 |
+
"<|21.36|>": 51433,
|
721 |
+
"<|21.38|>": 51434,
|
722 |
+
"<|21.40|>": 51435,
|
723 |
+
"<|21.42|>": 51436,
|
724 |
+
"<|21.44|>": 51437,
|
725 |
+
"<|21.46|>": 51438,
|
726 |
+
"<|21.48|>": 51439,
|
727 |
+
"<|21.50|>": 51440,
|
728 |
+
"<|21.52|>": 51441,
|
729 |
+
"<|21.54|>": 51442,
|
730 |
+
"<|21.56|>": 51443,
|
731 |
+
"<|21.58|>": 51444,
|
732 |
+
"<|21.60|>": 51445,
|
733 |
+
"<|21.62|>": 51446,
|
734 |
+
"<|21.64|>": 51447,
|
735 |
+
"<|21.66|>": 51448,
|
736 |
+
"<|21.68|>": 51449,
|
737 |
+
"<|21.70|>": 51450,
|
738 |
+
"<|21.72|>": 51451,
|
739 |
+
"<|21.74|>": 51452,
|
740 |
+
"<|21.76|>": 51453,
|
741 |
+
"<|21.78|>": 51454,
|
742 |
+
"<|21.80|>": 51455,
|
743 |
+
"<|21.82|>": 51456,
|
744 |
+
"<|21.84|>": 51457,
|
745 |
+
"<|21.86|>": 51458,
|
746 |
+
"<|21.88|>": 51459,
|
747 |
+
"<|21.90|>": 51460,
|
748 |
+
"<|21.92|>": 51461,
|
749 |
+
"<|21.94|>": 51462,
|
750 |
+
"<|21.96|>": 51463,
|
751 |
+
"<|21.98|>": 51464,
|
752 |
+
"<|22.00|>": 51465,
|
753 |
+
"<|22.02|>": 51466,
|
754 |
+
"<|22.04|>": 51467,
|
755 |
+
"<|22.06|>": 51468,
|
756 |
+
"<|22.08|>": 51469,
|
757 |
+
"<|22.10|>": 51470,
|
758 |
+
"<|22.12|>": 51471,
|
759 |
+
"<|22.14|>": 51472,
|
760 |
+
"<|22.16|>": 51473,
|
761 |
+
"<|22.18|>": 51474,
|
762 |
+
"<|22.20|>": 51475,
|
763 |
+
"<|22.22|>": 51476,
|
764 |
+
"<|22.24|>": 51477,
|
765 |
+
"<|22.26|>": 51478,
|
766 |
+
"<|22.28|>": 51479,
|
767 |
+
"<|22.30|>": 51480,
|
768 |
+
"<|22.32|>": 51481,
|
769 |
+
"<|22.34|>": 51482,
|
770 |
+
"<|22.36|>": 51483,
|
771 |
+
"<|22.38|>": 51484,
|
772 |
+
"<|22.40|>": 51485,
|
773 |
+
"<|22.42|>": 51486,
|
774 |
+
"<|22.44|>": 51487,
|
775 |
+
"<|22.46|>": 51488,
|
776 |
+
"<|22.48|>": 51489,
|
777 |
+
"<|22.50|>": 51490,
|
778 |
+
"<|22.52|>": 51491,
|
779 |
+
"<|22.54|>": 51492,
|
780 |
+
"<|22.56|>": 51493,
|
781 |
+
"<|22.58|>": 51494,
|
782 |
+
"<|22.60|>": 51495,
|
783 |
+
"<|22.62|>": 51496,
|
784 |
+
"<|22.64|>": 51497,
|
785 |
+
"<|22.66|>": 51498,
|
786 |
+
"<|22.68|>": 51499,
|
787 |
+
"<|22.70|>": 51500,
|
788 |
+
"<|22.72|>": 51501,
|
789 |
+
"<|22.74|>": 51502,
|
790 |
+
"<|22.76|>": 51503,
|
791 |
+
"<|22.78|>": 51504,
|
792 |
+
"<|22.80|>": 51505,
|
793 |
+
"<|22.82|>": 51506,
|
794 |
+
"<|22.84|>": 51507,
|
795 |
+
"<|22.86|>": 51508,
|
796 |
+
"<|22.88|>": 51509,
|
797 |
+
"<|22.90|>": 51510,
|
798 |
+
"<|22.92|>": 51511,
|
799 |
+
"<|22.94|>": 51512,
|
800 |
+
"<|22.96|>": 51513,
|
801 |
+
"<|22.98|>": 51514,
|
802 |
+
"<|23.00|>": 51515,
|
803 |
+
"<|23.02|>": 51516,
|
804 |
+
"<|23.04|>": 51517,
|
805 |
+
"<|23.06|>": 51518,
|
806 |
+
"<|23.08|>": 51519,
|
807 |
+
"<|23.10|>": 51520,
|
808 |
+
"<|23.12|>": 51521,
|
809 |
+
"<|23.14|>": 51522,
|
810 |
+
"<|23.16|>": 51523,
|
811 |
+
"<|23.18|>": 51524,
|
812 |
+
"<|23.20|>": 51525,
|
813 |
+
"<|23.22|>": 51526,
|
814 |
+
"<|23.24|>": 51527,
|
815 |
+
"<|23.26|>": 51528,
|
816 |
+
"<|23.28|>": 51529,
|
817 |
+
"<|23.30|>": 51530,
|
818 |
+
"<|23.32|>": 51531,
|
819 |
+
"<|23.34|>": 51532,
|
820 |
+
"<|23.36|>": 51533,
|
821 |
+
"<|23.38|>": 51534,
|
822 |
+
"<|23.40|>": 51535,
|
823 |
+
"<|23.42|>": 51536,
|
824 |
+
"<|23.44|>": 51537,
|
825 |
+
"<|23.46|>": 51538,
|
826 |
+
"<|23.48|>": 51539,
|
827 |
+
"<|23.50|>": 51540,
|
828 |
+
"<|23.52|>": 51541,
|
829 |
+
"<|23.54|>": 51542,
|
830 |
+
"<|23.56|>": 51543,
|
831 |
+
"<|23.58|>": 51544,
|
832 |
+
"<|23.60|>": 51545,
|
833 |
+
"<|23.62|>": 51546,
|
834 |
+
"<|23.64|>": 51547,
|
835 |
+
"<|23.66|>": 51548,
|
836 |
+
"<|23.68|>": 51549,
|
837 |
+
"<|23.70|>": 51550,
|
838 |
+
"<|23.72|>": 51551,
|
839 |
+
"<|23.74|>": 51552,
|
840 |
+
"<|23.76|>": 51553,
|
841 |
+
"<|23.78|>": 51554,
|
842 |
+
"<|23.80|>": 51555,
|
843 |
+
"<|23.82|>": 51556,
|
844 |
+
"<|23.84|>": 51557,
|
845 |
+
"<|23.86|>": 51558,
|
846 |
+
"<|23.88|>": 51559,
|
847 |
+
"<|23.90|>": 51560,
|
848 |
+
"<|23.92|>": 51561,
|
849 |
+
"<|23.94|>": 51562,
|
850 |
+
"<|23.96|>": 51563,
|
851 |
+
"<|23.98|>": 51564,
|
852 |
+
"<|24.00|>": 51565,
|
853 |
+
"<|24.02|>": 51566,
|
854 |
+
"<|24.04|>": 51567,
|
855 |
+
"<|24.06|>": 51568,
|
856 |
+
"<|24.08|>": 51569,
|
857 |
+
"<|24.10|>": 51570,
|
858 |
+
"<|24.12|>": 51571,
|
859 |
+
"<|24.14|>": 51572,
|
860 |
+
"<|24.16|>": 51573,
|
861 |
+
"<|24.18|>": 51574,
|
862 |
+
"<|24.20|>": 51575,
|
863 |
+
"<|24.22|>": 51576,
|
864 |
+
"<|24.24|>": 51577,
|
865 |
+
"<|24.26|>": 51578,
|
866 |
+
"<|24.28|>": 51579,
|
867 |
+
"<|24.30|>": 51580,
|
868 |
+
"<|24.32|>": 51581,
|
869 |
+
"<|24.34|>": 51582,
|
870 |
+
"<|24.36|>": 51583,
|
871 |
+
"<|24.38|>": 51584,
|
872 |
+
"<|24.40|>": 51585,
|
873 |
+
"<|24.42|>": 51586,
|
874 |
+
"<|24.44|>": 51587,
|
875 |
+
"<|24.46|>": 51588,
|
876 |
+
"<|24.48|>": 51589,
|
877 |
+
"<|24.50|>": 51590,
|
878 |
+
"<|24.52|>": 51591,
|
879 |
+
"<|24.54|>": 51592,
|
880 |
+
"<|24.56|>": 51593,
|
881 |
+
"<|24.58|>": 51594,
|
882 |
+
"<|24.60|>": 51595,
|
883 |
+
"<|24.62|>": 51596,
|
884 |
+
"<|24.64|>": 51597,
|
885 |
+
"<|24.66|>": 51598,
|
886 |
+
"<|24.68|>": 51599,
|
887 |
+
"<|24.70|>": 51600,
|
888 |
+
"<|24.72|>": 51601,
|
889 |
+
"<|24.74|>": 51602,
|
890 |
+
"<|24.76|>": 51603,
|
891 |
+
"<|24.78|>": 51604,
|
892 |
+
"<|24.80|>": 51605,
|
893 |
+
"<|24.82|>": 51606,
|
894 |
+
"<|24.84|>": 51607,
|
895 |
+
"<|24.86|>": 51608,
|
896 |
+
"<|24.88|>": 51609,
|
897 |
+
"<|24.90|>": 51610,
|
898 |
+
"<|24.92|>": 51611,
|
899 |
+
"<|24.94|>": 51612,
|
900 |
+
"<|24.96|>": 51613,
|
901 |
+
"<|24.98|>": 51614,
|
902 |
+
"<|25.00|>": 51615,
|
903 |
+
"<|25.02|>": 51616,
|
904 |
+
"<|25.04|>": 51617,
|
905 |
+
"<|25.06|>": 51618,
|
906 |
+
"<|25.08|>": 51619,
|
907 |
+
"<|25.10|>": 51620,
|
908 |
+
"<|25.12|>": 51621,
|
909 |
+
"<|25.14|>": 51622,
|
910 |
+
"<|25.16|>": 51623,
|
911 |
+
"<|25.18|>": 51624,
|
912 |
+
"<|25.20|>": 51625,
|
913 |
+
"<|25.22|>": 51626,
|
914 |
+
"<|25.24|>": 51627,
|
915 |
+
"<|25.26|>": 51628,
|
916 |
+
"<|25.28|>": 51629,
|
917 |
+
"<|25.30|>": 51630,
|
918 |
+
"<|25.32|>": 51631,
|
919 |
+
"<|25.34|>": 51632,
|
920 |
+
"<|25.36|>": 51633,
|
921 |
+
"<|25.38|>": 51634,
|
922 |
+
"<|25.40|>": 51635,
|
923 |
+
"<|25.42|>": 51636,
|
924 |
+
"<|25.44|>": 51637,
|
925 |
+
"<|25.46|>": 51638,
|
926 |
+
"<|25.48|>": 51639,
|
927 |
+
"<|25.50|>": 51640,
|
928 |
+
"<|25.52|>": 51641,
|
929 |
+
"<|25.54|>": 51642,
|
930 |
+
"<|25.56|>": 51643,
|
931 |
+
"<|25.58|>": 51644,
|
932 |
+
"<|25.60|>": 51645,
|
933 |
+
"<|25.62|>": 51646,
|
934 |
+
"<|25.64|>": 51647,
|
935 |
+
"<|25.66|>": 51648,
|
936 |
+
"<|25.68|>": 51649,
|
937 |
+
"<|25.70|>": 51650,
|
938 |
+
"<|25.72|>": 51651,
|
939 |
+
"<|25.74|>": 51652,
|
940 |
+
"<|25.76|>": 51653,
|
941 |
+
"<|25.78|>": 51654,
|
942 |
+
"<|25.80|>": 51655,
|
943 |
+
"<|25.82|>": 51656,
|
944 |
+
"<|25.84|>": 51657,
|
945 |
+
"<|25.86|>": 51658,
|
946 |
+
"<|25.88|>": 51659,
|
947 |
+
"<|25.90|>": 51660,
|
948 |
+
"<|25.92|>": 51661,
|
949 |
+
"<|25.94|>": 51662,
|
950 |
+
"<|25.96|>": 51663,
|
951 |
+
"<|25.98|>": 51664,
|
952 |
+
"<|26.00|>": 51665,
|
953 |
+
"<|26.02|>": 51666,
|
954 |
+
"<|26.04|>": 51667,
|
955 |
+
"<|26.06|>": 51668,
|
956 |
+
"<|26.08|>": 51669,
|
957 |
+
"<|26.10|>": 51670,
|
958 |
+
"<|26.12|>": 51671,
|
959 |
+
"<|26.14|>": 51672,
|
960 |
+
"<|26.16|>": 51673,
|
961 |
+
"<|26.18|>": 51674,
|
962 |
+
"<|26.20|>": 51675,
|
963 |
+
"<|26.22|>": 51676,
|
964 |
+
"<|26.24|>": 51677,
|
965 |
+
"<|26.26|>": 51678,
|
966 |
+
"<|26.28|>": 51679,
|
967 |
+
"<|26.30|>": 51680,
|
968 |
+
"<|26.32|>": 51681,
|
969 |
+
"<|26.34|>": 51682,
|
970 |
+
"<|26.36|>": 51683,
|
971 |
+
"<|26.38|>": 51684,
|
972 |
+
"<|26.40|>": 51685,
|
973 |
+
"<|26.42|>": 51686,
|
974 |
+
"<|26.44|>": 51687,
|
975 |
+
"<|26.46|>": 51688,
|
976 |
+
"<|26.48|>": 51689,
|
977 |
+
"<|26.50|>": 51690,
|
978 |
+
"<|26.52|>": 51691,
|
979 |
+
"<|26.54|>": 51692,
|
980 |
+
"<|26.56|>": 51693,
|
981 |
+
"<|26.58|>": 51694,
|
982 |
+
"<|26.60|>": 51695,
|
983 |
+
"<|26.62|>": 51696,
|
984 |
+
"<|26.64|>": 51697,
|
985 |
+
"<|26.66|>": 51698,
|
986 |
+
"<|26.68|>": 51699,
|
987 |
+
"<|26.70|>": 51700,
|
988 |
+
"<|26.72|>": 51701,
|
989 |
+
"<|26.74|>": 51702,
|
990 |
+
"<|26.76|>": 51703,
|
991 |
+
"<|26.78|>": 51704,
|
992 |
+
"<|26.80|>": 51705,
|
993 |
+
"<|26.82|>": 51706,
|
994 |
+
"<|26.84|>": 51707,
|
995 |
+
"<|26.86|>": 51708,
|
996 |
+
"<|26.88|>": 51709,
|
997 |
+
"<|26.90|>": 51710,
|
998 |
+
"<|26.92|>": 51711,
|
999 |
+
"<|26.94|>": 51712,
|
1000 |
+
"<|26.96|>": 51713,
|
1001 |
+
"<|26.98|>": 51714,
|
1002 |
+
"<|27.00|>": 51715,
|
1003 |
+
"<|27.02|>": 51716,
|
1004 |
+
"<|27.04|>": 51717,
|
1005 |
+
"<|27.06|>": 51718,
|
1006 |
+
"<|27.08|>": 51719,
|
1007 |
+
"<|27.10|>": 51720,
|
1008 |
+
"<|27.12|>": 51721,
|
1009 |
+
"<|27.14|>": 51722,
|
1010 |
+
"<|27.16|>": 51723,
|
1011 |
+
"<|27.18|>": 51724,
|
1012 |
+
"<|27.20|>": 51725,
|
1013 |
+
"<|27.22|>": 51726,
|
1014 |
+
"<|27.24|>": 51727,
|
1015 |
+
"<|27.26|>": 51728,
|
1016 |
+
"<|27.28|>": 51729,
|
1017 |
+
"<|27.30|>": 51730,
|
1018 |
+
"<|27.32|>": 51731,
|
1019 |
+
"<|27.34|>": 51732,
|
1020 |
+
"<|27.36|>": 51733,
|
1021 |
+
"<|27.38|>": 51734,
|
1022 |
+
"<|27.40|>": 51735,
|
1023 |
+
"<|27.42|>": 51736,
|
1024 |
+
"<|27.44|>": 51737,
|
1025 |
+
"<|27.46|>": 51738,
|
1026 |
+
"<|27.48|>": 51739,
|
1027 |
+
"<|27.50|>": 51740,
|
1028 |
+
"<|27.52|>": 51741,
|
1029 |
+
"<|27.54|>": 51742,
|
1030 |
+
"<|27.56|>": 51743,
|
1031 |
+
"<|27.58|>": 51744,
|
1032 |
+
"<|27.60|>": 51745,
|
1033 |
+
"<|27.62|>": 51746,
|
1034 |
+
"<|27.64|>": 51747,
|
1035 |
+
"<|27.66|>": 51748,
|
1036 |
+
"<|27.68|>": 51749,
|
1037 |
+
"<|27.70|>": 51750,
|
1038 |
+
"<|27.72|>": 51751,
|
1039 |
+
"<|27.74|>": 51752,
|
1040 |
+
"<|27.76|>": 51753,
|
1041 |
+
"<|27.78|>": 51754,
|
1042 |
+
"<|27.80|>": 51755,
|
1043 |
+
"<|27.82|>": 51756,
|
1044 |
+
"<|27.84|>": 51757,
|
1045 |
+
"<|27.86|>": 51758,
|
1046 |
+
"<|27.88|>": 51759,
|
1047 |
+
"<|27.90|>": 51760,
|
1048 |
+
"<|27.92|>": 51761,
|
1049 |
+
"<|27.94|>": 51762,
|
1050 |
+
"<|27.96|>": 51763,
|
1051 |
+
"<|27.98|>": 51764,
|
1052 |
+
"<|28.00|>": 51765,
|
1053 |
+
"<|28.02|>": 51766,
|
1054 |
+
"<|28.04|>": 51767,
|
1055 |
+
"<|28.06|>": 51768,
|
1056 |
+
"<|28.08|>": 51769,
|
1057 |
+
"<|28.10|>": 51770,
|
1058 |
+
"<|28.12|>": 51771,
|
1059 |
+
"<|28.14|>": 51772,
|
1060 |
+
"<|28.16|>": 51773,
|
1061 |
+
"<|28.18|>": 51774,
|
1062 |
+
"<|28.20|>": 51775,
|
1063 |
+
"<|28.22|>": 51776,
|
1064 |
+
"<|28.24|>": 51777,
|
1065 |
+
"<|28.26|>": 51778,
|
1066 |
+
"<|28.28|>": 51779,
|
1067 |
+
"<|28.30|>": 51780,
|
1068 |
+
"<|28.32|>": 51781,
|
1069 |
+
"<|28.34|>": 51782,
|
1070 |
+
"<|28.36|>": 51783,
|
1071 |
+
"<|28.38|>": 51784,
|
1072 |
+
"<|28.40|>": 51785,
|
1073 |
+
"<|28.42|>": 51786,
|
1074 |
+
"<|28.44|>": 51787,
|
1075 |
+
"<|28.46|>": 51788,
|
1076 |
+
"<|28.48|>": 51789,
|
1077 |
+
"<|28.50|>": 51790,
|
1078 |
+
"<|28.52|>": 51791,
|
1079 |
+
"<|28.54|>": 51792,
|
1080 |
+
"<|28.56|>": 51793,
|
1081 |
+
"<|28.58|>": 51794,
|
1082 |
+
"<|28.60|>": 51795,
|
1083 |
+
"<|28.62|>": 51796,
|
1084 |
+
"<|28.64|>": 51797,
|
1085 |
+
"<|28.66|>": 51798,
|
1086 |
+
"<|28.68|>": 51799,
|
1087 |
+
"<|28.70|>": 51800,
|
1088 |
+
"<|28.72|>": 51801,
|
1089 |
+
"<|28.74|>": 51802,
|
1090 |
+
"<|28.76|>": 51803,
|
1091 |
+
"<|28.78|>": 51804,
|
1092 |
+
"<|28.80|>": 51805,
|
1093 |
+
"<|28.82|>": 51806,
|
1094 |
+
"<|28.84|>": 51807,
|
1095 |
+
"<|28.86|>": 51808,
|
1096 |
+
"<|28.88|>": 51809,
|
1097 |
+
"<|28.90|>": 51810,
|
1098 |
+
"<|28.92|>": 51811,
|
1099 |
+
"<|28.94|>": 51812,
|
1100 |
+
"<|28.96|>": 51813,
|
1101 |
+
"<|28.98|>": 51814,
|
1102 |
+
"<|29.00|>": 51815,
|
1103 |
+
"<|29.02|>": 51816,
|
1104 |
+
"<|29.04|>": 51817,
|
1105 |
+
"<|29.06|>": 51818,
|
1106 |
+
"<|29.08|>": 51819,
|
1107 |
+
"<|29.10|>": 51820,
|
1108 |
+
"<|29.12|>": 51821,
|
1109 |
+
"<|29.14|>": 51822,
|
1110 |
+
"<|29.16|>": 51823,
|
1111 |
+
"<|29.18|>": 51824,
|
1112 |
+
"<|29.20|>": 51825,
|
1113 |
+
"<|29.22|>": 51826,
|
1114 |
+
"<|29.24|>": 51827,
|
1115 |
+
"<|29.26|>": 51828,
|
1116 |
+
"<|29.28|>": 51829,
|
1117 |
+
"<|29.30|>": 51830,
|
1118 |
+
"<|29.32|>": 51831,
|
1119 |
+
"<|29.34|>": 51832,
|
1120 |
+
"<|29.36|>": 51833,
|
1121 |
+
"<|29.38|>": 51834,
|
1122 |
+
"<|29.40|>": 51835,
|
1123 |
+
"<|29.42|>": 51836,
|
1124 |
+
"<|29.44|>": 51837,
|
1125 |
+
"<|29.46|>": 51838,
|
1126 |
+
"<|29.48|>": 51839,
|
1127 |
+
"<|29.50|>": 51840,
|
1128 |
+
"<|29.52|>": 51841,
|
1129 |
+
"<|29.54|>": 51842,
|
1130 |
+
"<|29.56|>": 51843,
|
1131 |
+
"<|29.58|>": 51844,
|
1132 |
+
"<|29.60|>": 51845,
|
1133 |
+
"<|29.62|>": 51846,
|
1134 |
+
"<|29.64|>": 51847,
|
1135 |
+
"<|29.66|>": 51848,
|
1136 |
+
"<|29.68|>": 51849,
|
1137 |
+
"<|29.70|>": 51850,
|
1138 |
+
"<|29.72|>": 51851,
|
1139 |
+
"<|29.74|>": 51852,
|
1140 |
+
"<|29.76|>": 51853,
|
1141 |
+
"<|29.78|>": 51854,
|
1142 |
+
"<|29.80|>": 51855,
|
1143 |
+
"<|29.82|>": 51856,
|
1144 |
+
"<|29.84|>": 51857,
|
1145 |
+
"<|29.86|>": 51858,
|
1146 |
+
"<|29.88|>": 51859,
|
1147 |
+
"<|29.90|>": 51860,
|
1148 |
+
"<|29.92|>": 51861,
|
1149 |
+
"<|29.94|>": 51862,
|
1150 |
+
"<|29.96|>": 51863,
|
1151 |
+
"<|29.98|>": 51864,
|
1152 |
+
"<|3.00|>": 50515,
|
1153 |
+
"<|3.02|>": 50516,
|
1154 |
+
"<|3.04|>": 50517,
|
1155 |
+
"<|3.06|>": 50518,
|
1156 |
+
"<|3.08|>": 50519,
|
1157 |
+
"<|3.10|>": 50520,
|
1158 |
+
"<|3.12|>": 50521,
|
1159 |
+
"<|3.14|>": 50522,
|
1160 |
+
"<|3.16|>": 50523,
|
1161 |
+
"<|3.18|>": 50524,
|
1162 |
+
"<|3.20|>": 50525,
|
1163 |
+
"<|3.22|>": 50526,
|
1164 |
+
"<|3.24|>": 50527,
|
1165 |
+
"<|3.26|>": 50528,
|
1166 |
+
"<|3.28|>": 50529,
|
1167 |
+
"<|3.30|>": 50530,
|
1168 |
+
"<|3.32|>": 50531,
|
1169 |
+
"<|3.34|>": 50532,
|
1170 |
+
"<|3.36|>": 50533,
|
1171 |
+
"<|3.38|>": 50534,
|
1172 |
+
"<|3.40|>": 50535,
|
1173 |
+
"<|3.42|>": 50536,
|
1174 |
+
"<|3.44|>": 50537,
|
1175 |
+
"<|3.46|>": 50538,
|
1176 |
+
"<|3.48|>": 50539,
|
1177 |
+
"<|3.50|>": 50540,
|
1178 |
+
"<|3.52|>": 50541,
|
1179 |
+
"<|3.54|>": 50542,
|
1180 |
+
"<|3.56|>": 50543,
|
1181 |
+
"<|3.58|>": 50544,
|
1182 |
+
"<|3.60|>": 50545,
|
1183 |
+
"<|3.62|>": 50546,
|
1184 |
+
"<|3.64|>": 50547,
|
1185 |
+
"<|3.66|>": 50548,
|
1186 |
+
"<|3.68|>": 50549,
|
1187 |
+
"<|3.70|>": 50550,
|
1188 |
+
"<|3.72|>": 50551,
|
1189 |
+
"<|3.74|>": 50552,
|
1190 |
+
"<|3.76|>": 50553,
|
1191 |
+
"<|3.78|>": 50554,
|
1192 |
+
"<|3.80|>": 50555,
|
1193 |
+
"<|3.82|>": 50556,
|
1194 |
+
"<|3.84|>": 50557,
|
1195 |
+
"<|3.86|>": 50558,
|
1196 |
+
"<|3.88|>": 50559,
|
1197 |
+
"<|3.90|>": 50560,
|
1198 |
+
"<|3.92|>": 50561,
|
1199 |
+
"<|3.94|>": 50562,
|
1200 |
+
"<|3.96|>": 50563,
|
1201 |
+
"<|3.98|>": 50564,
|
1202 |
+
"<|30.00|>": 51865,
|
1203 |
+
"<|4.00|>": 50565,
|
1204 |
+
"<|4.02|>": 50566,
|
1205 |
+
"<|4.04|>": 50567,
|
1206 |
+
"<|4.06|>": 50568,
|
1207 |
+
"<|4.08|>": 50569,
|
1208 |
+
"<|4.10|>": 50570,
|
1209 |
+
"<|4.12|>": 50571,
|
1210 |
+
"<|4.14|>": 50572,
|
1211 |
+
"<|4.16|>": 50573,
|
1212 |
+
"<|4.18|>": 50574,
|
1213 |
+
"<|4.20|>": 50575,
|
1214 |
+
"<|4.22|>": 50576,
|
1215 |
+
"<|4.24|>": 50577,
|
1216 |
+
"<|4.26|>": 50578,
|
1217 |
+
"<|4.28|>": 50579,
|
1218 |
+
"<|4.30|>": 50580,
|
1219 |
+
"<|4.32|>": 50581,
|
1220 |
+
"<|4.34|>": 50582,
|
1221 |
+
"<|4.36|>": 50583,
|
1222 |
+
"<|4.38|>": 50584,
|
1223 |
+
"<|4.40|>": 50585,
|
1224 |
+
"<|4.42|>": 50586,
|
1225 |
+
"<|4.44|>": 50587,
|
1226 |
+
"<|4.46|>": 50588,
|
1227 |
+
"<|4.48|>": 50589,
|
1228 |
+
"<|4.50|>": 50590,
|
1229 |
+
"<|4.52|>": 50591,
|
1230 |
+
"<|4.54|>": 50592,
|
1231 |
+
"<|4.56|>": 50593,
|
1232 |
+
"<|4.58|>": 50594,
|
1233 |
+
"<|4.60|>": 50595,
|
1234 |
+
"<|4.62|>": 50596,
|
1235 |
+
"<|4.64|>": 50597,
|
1236 |
+
"<|4.66|>": 50598,
|
1237 |
+
"<|4.68|>": 50599,
|
1238 |
+
"<|4.70|>": 50600,
|
1239 |
+
"<|4.72|>": 50601,
|
1240 |
+
"<|4.74|>": 50602,
|
1241 |
+
"<|4.76|>": 50603,
|
1242 |
+
"<|4.78|>": 50604,
|
1243 |
+
"<|4.80|>": 50605,
|
1244 |
+
"<|4.82|>": 50606,
|
1245 |
+
"<|4.84|>": 50607,
|
1246 |
+
"<|4.86|>": 50608,
|
1247 |
+
"<|4.88|>": 50609,
|
1248 |
+
"<|4.90|>": 50610,
|
1249 |
+
"<|4.92|>": 50611,
|
1250 |
+
"<|4.94|>": 50612,
|
1251 |
+
"<|4.96|>": 50613,
|
1252 |
+
"<|4.98|>": 50614,
|
1253 |
+
"<|5.00|>": 50615,
|
1254 |
+
"<|5.02|>": 50616,
|
1255 |
+
"<|5.04|>": 50617,
|
1256 |
+
"<|5.06|>": 50618,
|
1257 |
+
"<|5.08|>": 50619,
|
1258 |
+
"<|5.10|>": 50620,
|
1259 |
+
"<|5.12|>": 50621,
|
1260 |
+
"<|5.14|>": 50622,
|
1261 |
+
"<|5.16|>": 50623,
|
1262 |
+
"<|5.18|>": 50624,
|
1263 |
+
"<|5.20|>": 50625,
|
1264 |
+
"<|5.22|>": 50626,
|
1265 |
+
"<|5.24|>": 50627,
|
1266 |
+
"<|5.26|>": 50628,
|
1267 |
+
"<|5.28|>": 50629,
|
1268 |
+
"<|5.30|>": 50630,
|
1269 |
+
"<|5.32|>": 50631,
|
1270 |
+
"<|5.34|>": 50632,
|
1271 |
+
"<|5.36|>": 50633,
|
1272 |
+
"<|5.38|>": 50634,
|
1273 |
+
"<|5.40|>": 50635,
|
1274 |
+
"<|5.42|>": 50636,
|
1275 |
+
"<|5.44|>": 50637,
|
1276 |
+
"<|5.46|>": 50638,
|
1277 |
+
"<|5.48|>": 50639,
|
1278 |
+
"<|5.50|>": 50640,
|
1279 |
+
"<|5.52|>": 50641,
|
1280 |
+
"<|5.54|>": 50642,
|
1281 |
+
"<|5.56|>": 50643,
|
1282 |
+
"<|5.58|>": 50644,
|
1283 |
+
"<|5.60|>": 50645,
|
1284 |
+
"<|5.62|>": 50646,
|
1285 |
+
"<|5.64|>": 50647,
|
1286 |
+
"<|5.66|>": 50648,
|
1287 |
+
"<|5.68|>": 50649,
|
1288 |
+
"<|5.70|>": 50650,
|
1289 |
+
"<|5.72|>": 50651,
|
1290 |
+
"<|5.74|>": 50652,
|
1291 |
+
"<|5.76|>": 50653,
|
1292 |
+
"<|5.78|>": 50654,
|
1293 |
+
"<|5.80|>": 50655,
|
1294 |
+
"<|5.82|>": 50656,
|
1295 |
+
"<|5.84|>": 50657,
|
1296 |
+
"<|5.86|>": 50658,
|
1297 |
+
"<|5.88|>": 50659,
|
1298 |
+
"<|5.90|>": 50660,
|
1299 |
+
"<|5.92|>": 50661,
|
1300 |
+
"<|5.94|>": 50662,
|
1301 |
+
"<|5.96|>": 50663,
|
1302 |
+
"<|5.98|>": 50664,
|
1303 |
+
"<|6.00|>": 50665,
|
1304 |
+
"<|6.02|>": 50666,
|
1305 |
+
"<|6.04|>": 50667,
|
1306 |
+
"<|6.06|>": 50668,
|
1307 |
+
"<|6.08|>": 50669,
|
1308 |
+
"<|6.10|>": 50670,
|
1309 |
+
"<|6.12|>": 50671,
|
1310 |
+
"<|6.14|>": 50672,
|
1311 |
+
"<|6.16|>": 50673,
|
1312 |
+
"<|6.18|>": 50674,
|
1313 |
+
"<|6.20|>": 50675,
|
1314 |
+
"<|6.22|>": 50676,
|
1315 |
+
"<|6.24|>": 50677,
|
1316 |
+
"<|6.26|>": 50678,
|
1317 |
+
"<|6.28|>": 50679,
|
1318 |
+
"<|6.30|>": 50680,
|
1319 |
+
"<|6.32|>": 50681,
|
1320 |
+
"<|6.34|>": 50682,
|
1321 |
+
"<|6.36|>": 50683,
|
1322 |
+
"<|6.38|>": 50684,
|
1323 |
+
"<|6.40|>": 50685,
|
1324 |
+
"<|6.42|>": 50686,
|
1325 |
+
"<|6.44|>": 50687,
|
1326 |
+
"<|6.46|>": 50688,
|
1327 |
+
"<|6.48|>": 50689,
|
1328 |
+
"<|6.50|>": 50690,
|
1329 |
+
"<|6.52|>": 50691,
|
1330 |
+
"<|6.54|>": 50692,
|
1331 |
+
"<|6.56|>": 50693,
|
1332 |
+
"<|6.58|>": 50694,
|
1333 |
+
"<|6.60|>": 50695,
|
1334 |
+
"<|6.62|>": 50696,
|
1335 |
+
"<|6.64|>": 50697,
|
1336 |
+
"<|6.66|>": 50698,
|
1337 |
+
"<|6.68|>": 50699,
|
1338 |
+
"<|6.70|>": 50700,
|
1339 |
+
"<|6.72|>": 50701,
|
1340 |
+
"<|6.74|>": 50702,
|
1341 |
+
"<|6.76|>": 50703,
|
1342 |
+
"<|6.78|>": 50704,
|
1343 |
+
"<|6.80|>": 50705,
|
1344 |
+
"<|6.82|>": 50706,
|
1345 |
+
"<|6.84|>": 50707,
|
1346 |
+
"<|6.86|>": 50708,
|
1347 |
+
"<|6.88|>": 50709,
|
1348 |
+
"<|6.90|>": 50710,
|
1349 |
+
"<|6.92|>": 50711,
|
1350 |
+
"<|6.94|>": 50712,
|
1351 |
+
"<|6.96|>": 50713,
|
1352 |
+
"<|6.98|>": 50714,
|
1353 |
+
"<|7.00|>": 50715,
|
1354 |
+
"<|7.02|>": 50716,
|
1355 |
+
"<|7.04|>": 50717,
|
1356 |
+
"<|7.06|>": 50718,
|
1357 |
+
"<|7.08|>": 50719,
|
1358 |
+
"<|7.10|>": 50720,
|
1359 |
+
"<|7.12|>": 50721,
|
1360 |
+
"<|7.14|>": 50722,
|
1361 |
+
"<|7.16|>": 50723,
|
1362 |
+
"<|7.18|>": 50724,
|
1363 |
+
"<|7.20|>": 50725,
|
1364 |
+
"<|7.22|>": 50726,
|
1365 |
+
"<|7.24|>": 50727,
|
1366 |
+
"<|7.26|>": 50728,
|
1367 |
+
"<|7.28|>": 50729,
|
1368 |
+
"<|7.30|>": 50730,
|
1369 |
+
"<|7.32|>": 50731,
|
1370 |
+
"<|7.34|>": 50732,
|
1371 |
+
"<|7.36|>": 50733,
|
1372 |
+
"<|7.38|>": 50734,
|
1373 |
+
"<|7.40|>": 50735,
|
1374 |
+
"<|7.42|>": 50736,
|
1375 |
+
"<|7.44|>": 50737,
|
1376 |
+
"<|7.46|>": 50738,
|
1377 |
+
"<|7.48|>": 50739,
|
1378 |
+
"<|7.50|>": 50740,
|
1379 |
+
"<|7.52|>": 50741,
|
1380 |
+
"<|7.54|>": 50742,
|
1381 |
+
"<|7.56|>": 50743,
|
1382 |
+
"<|7.58|>": 50744,
|
1383 |
+
"<|7.60|>": 50745,
|
1384 |
+
"<|7.62|>": 50746,
|
1385 |
+
"<|7.64|>": 50747,
|
1386 |
+
"<|7.66|>": 50748,
|
1387 |
+
"<|7.68|>": 50749,
|
1388 |
+
"<|7.70|>": 50750,
|
1389 |
+
"<|7.72|>": 50751,
|
1390 |
+
"<|7.74|>": 50752,
|
1391 |
+
"<|7.76|>": 50753,
|
1392 |
+
"<|7.78|>": 50754,
|
1393 |
+
"<|7.80|>": 50755,
|
1394 |
+
"<|7.82|>": 50756,
|
1395 |
+
"<|7.84|>": 50757,
|
1396 |
+
"<|7.86|>": 50758,
|
1397 |
+
"<|7.88|>": 50759,
|
1398 |
+
"<|7.90|>": 50760,
|
1399 |
+
"<|7.92|>": 50761,
|
1400 |
+
"<|7.94|>": 50762,
|
1401 |
+
"<|7.96|>": 50763,
|
1402 |
+
"<|7.98|>": 50764,
|
1403 |
+
"<|8.00|>": 50765,
|
1404 |
+
"<|8.02|>": 50766,
|
1405 |
+
"<|8.04|>": 50767,
|
1406 |
+
"<|8.06|>": 50768,
|
1407 |
+
"<|8.08|>": 50769,
|
1408 |
+
"<|8.10|>": 50770,
|
1409 |
+
"<|8.12|>": 50771,
|
1410 |
+
"<|8.14|>": 50772,
|
1411 |
+
"<|8.16|>": 50773,
|
1412 |
+
"<|8.18|>": 50774,
|
1413 |
+
"<|8.20|>": 50775,
|
1414 |
+
"<|8.22|>": 50776,
|
1415 |
+
"<|8.24|>": 50777,
|
1416 |
+
"<|8.26|>": 50778,
|
1417 |
+
"<|8.28|>": 50779,
|
1418 |
+
"<|8.30|>": 50780,
|
1419 |
+
"<|8.32|>": 50781,
|
1420 |
+
"<|8.34|>": 50782,
|
1421 |
+
"<|8.36|>": 50783,
|
1422 |
+
"<|8.38|>": 50784,
|
1423 |
+
"<|8.40|>": 50785,
|
1424 |
+
"<|8.42|>": 50786,
|
1425 |
+
"<|8.44|>": 50787,
|
1426 |
+
"<|8.46|>": 50788,
|
1427 |
+
"<|8.48|>": 50789,
|
1428 |
+
"<|8.50|>": 50790,
|
1429 |
+
"<|8.52|>": 50791,
|
1430 |
+
"<|8.54|>": 50792,
|
1431 |
+
"<|8.56|>": 50793,
|
1432 |
+
"<|8.58|>": 50794,
|
1433 |
+
"<|8.60|>": 50795,
|
1434 |
+
"<|8.62|>": 50796,
|
1435 |
+
"<|8.64|>": 50797,
|
1436 |
+
"<|8.66|>": 50798,
|
1437 |
+
"<|8.68|>": 50799,
|
1438 |
+
"<|8.70|>": 50800,
|
1439 |
+
"<|8.72|>": 50801,
|
1440 |
+
"<|8.74|>": 50802,
|
1441 |
+
"<|8.76|>": 50803,
|
1442 |
+
"<|8.78|>": 50804,
|
1443 |
+
"<|8.80|>": 50805,
|
1444 |
+
"<|8.82|>": 50806,
|
1445 |
+
"<|8.84|>": 50807,
|
1446 |
+
"<|8.86|>": 50808,
|
1447 |
+
"<|8.88|>": 50809,
|
1448 |
+
"<|8.90|>": 50810,
|
1449 |
+
"<|8.92|>": 50811,
|
1450 |
+
"<|8.94|>": 50812,
|
1451 |
+
"<|8.96|>": 50813,
|
1452 |
+
"<|8.98|>": 50814,
|
1453 |
+
"<|9.00|>": 50815,
|
1454 |
+
"<|9.02|>": 50816,
|
1455 |
+
"<|9.04|>": 50817,
|
1456 |
+
"<|9.06|>": 50818,
|
1457 |
+
"<|9.08|>": 50819,
|
1458 |
+
"<|9.10|>": 50820,
|
1459 |
+
"<|9.12|>": 50821,
|
1460 |
+
"<|9.14|>": 50822,
|
1461 |
+
"<|9.16|>": 50823,
|
1462 |
+
"<|9.18|>": 50824,
|
1463 |
+
"<|9.20|>": 50825,
|
1464 |
+
"<|9.22|>": 50826,
|
1465 |
+
"<|9.24|>": 50827,
|
1466 |
+
"<|9.26|>": 50828,
|
1467 |
+
"<|9.28|>": 50829,
|
1468 |
+
"<|9.30|>": 50830,
|
1469 |
+
"<|9.32|>": 50831,
|
1470 |
+
"<|9.34|>": 50832,
|
1471 |
+
"<|9.36|>": 50833,
|
1472 |
+
"<|9.38|>": 50834,
|
1473 |
+
"<|9.40|>": 50835,
|
1474 |
+
"<|9.42|>": 50836,
|
1475 |
+
"<|9.44|>": 50837,
|
1476 |
+
"<|9.46|>": 50838,
|
1477 |
+
"<|9.48|>": 50839,
|
1478 |
+
"<|9.50|>": 50840,
|
1479 |
+
"<|9.52|>": 50841,
|
1480 |
+
"<|9.54|>": 50842,
|
1481 |
+
"<|9.56|>": 50843,
|
1482 |
+
"<|9.58|>": 50844,
|
1483 |
+
"<|9.60|>": 50845,
|
1484 |
+
"<|9.62|>": 50846,
|
1485 |
+
"<|9.64|>": 50847,
|
1486 |
+
"<|9.66|>": 50848,
|
1487 |
+
"<|9.68|>": 50849,
|
1488 |
+
"<|9.70|>": 50850,
|
1489 |
+
"<|9.72|>": 50851,
|
1490 |
+
"<|9.74|>": 50852,
|
1491 |
+
"<|9.76|>": 50853,
|
1492 |
+
"<|9.78|>": 50854,
|
1493 |
+
"<|9.80|>": 50855,
|
1494 |
+
"<|9.82|>": 50856,
|
1495 |
+
"<|9.84|>": 50857,
|
1496 |
+
"<|9.86|>": 50858,
|
1497 |
+
"<|9.88|>": 50859,
|
1498 |
+
"<|9.90|>": 50860,
|
1499 |
+
"<|9.92|>": 50861,
|
1500 |
+
"<|9.94|>": 50862,
|
1501 |
+
"<|9.96|>": 50863,
|
1502 |
+
"<|9.98|>": 50864,
|
1503 |
+
"<|af|>": 50327,
|
1504 |
+
"<|am|>": 50334,
|
1505 |
+
"<|ar|>": 50272,
|
1506 |
+
"<|as|>": 50350,
|
1507 |
+
"<|az|>": 50304,
|
1508 |
+
"<|ba|>": 50355,
|
1509 |
+
"<|be|>": 50330,
|
1510 |
+
"<|bg|>": 50292,
|
1511 |
+
"<|bn|>": 50302,
|
1512 |
+
"<|bo|>": 50347,
|
1513 |
+
"<|br|>": 50309,
|
1514 |
+
"<|bs|>": 50315,
|
1515 |
+
"<|ca|>": 50270,
|
1516 |
+
"<|cs|>": 50283,
|
1517 |
+
"<|cy|>": 50297,
|
1518 |
+
"<|da|>": 50285,
|
1519 |
+
"<|de|>": 50261,
|
1520 |
+
"<|el|>": 50281,
|
1521 |
+
"<|endoftext|>": 50257,
|
1522 |
+
"<|en|>": 50259,
|
1523 |
+
"<|es|>": 50262,
|
1524 |
+
"<|et|>": 50307,
|
1525 |
+
"<|eu|>": 50310,
|
1526 |
+
"<|fa|>": 50300,
|
1527 |
+
"<|fi|>": 50277,
|
1528 |
+
"<|fo|>": 50338,
|
1529 |
+
"<|fr|>": 50265,
|
1530 |
+
"<|gl|>": 50319,
|
1531 |
+
"<|gu|>": 50333,
|
1532 |
+
"<|haw|>": 50352,
|
1533 |
+
"<|ha|>": 50354,
|
1534 |
+
"<|he|>": 50279,
|
1535 |
+
"<|hi|>": 50276,
|
1536 |
+
"<|hr|>": 50291,
|
1537 |
+
"<|ht|>": 50339,
|
1538 |
+
"<|hu|>": 50286,
|
1539 |
+
"<|hy|>": 50312,
|
1540 |
+
"<|id|>": 50275,
|
1541 |
+
"<|is|>": 50311,
|
1542 |
+
"<|it|>": 50274,
|
1543 |
+
"<|ja|>": 50266,
|
1544 |
+
"<|jw|>": 50356,
|
1545 |
+
"<|ka|>": 50329,
|
1546 |
+
"<|kk|>": 50316,
|
1547 |
+
"<|km|>": 50323,
|
1548 |
+
"<|kn|>": 50306,
|
1549 |
+
"<|ko|>": 50264,
|
1550 |
+
"<|la|>": 50294,
|
1551 |
+
"<|lb|>": 50345,
|
1552 |
+
"<|ln|>": 50353,
|
1553 |
+
"<|lo|>": 50336,
|
1554 |
+
"<|lt|>": 50293,
|
1555 |
+
"<|lv|>": 50301,
|
1556 |
+
"<|mg|>": 50349,
|
1557 |
+
"<|mi|>": 50295,
|
1558 |
+
"<|mk|>": 50308,
|
1559 |
+
"<|ml|>": 50296,
|
1560 |
+
"<|mn|>": 50314,
|
1561 |
+
"<|mr|>": 50320,
|
1562 |
+
"<|ms|>": 50282,
|
1563 |
+
"<|mt|>": 50343,
|
1564 |
+
"<|my|>": 50346,
|
1565 |
+
"<|ne|>": 50313,
|
1566 |
+
"<|nl|>": 50271,
|
1567 |
+
"<|nn|>": 50342,
|
1568 |
+
"<|nospeech|>": 50363,
|
1569 |
+
"<|notimestamps|>": 50364,
|
1570 |
+
"<|no|>": 50288,
|
1571 |
+
"<|oc|>": 50328,
|
1572 |
+
"<|pa|>": 50321,
|
1573 |
+
"<|pl|>": 50269,
|
1574 |
+
"<|ps|>": 50340,
|
1575 |
+
"<|pt|>": 50267,
|
1576 |
+
"<|ro|>": 50284,
|
1577 |
+
"<|ru|>": 50263,
|
1578 |
+
"<|sa|>": 50344,
|
1579 |
+
"<|sd|>": 50332,
|
1580 |
+
"<|si|>": 50322,
|
1581 |
+
"<|sk|>": 50298,
|
1582 |
+
"<|sl|>": 50305,
|
1583 |
+
"<|sn|>": 50324,
|
1584 |
+
"<|so|>": 50326,
|
1585 |
+
"<|sq|>": 50317,
|
1586 |
+
"<|sr|>": 50303,
|
1587 |
+
"<|startoflm|>": 50361,
|
1588 |
+
"<|startofprev|>": 50362,
|
1589 |
+
"<|startoftranscript|>": 50258,
|
1590 |
+
"<|su|>": 50357,
|
1591 |
+
"<|sv|>": 50273,
|
1592 |
+
"<|sw|>": 50318,
|
1593 |
+
"<|ta|>": 50287,
|
1594 |
+
"<|te|>": 50299,
|
1595 |
+
"<|tg|>": 50331,
|
1596 |
+
"<|th|>": 50289,
|
1597 |
+
"<|tk|>": 50341,
|
1598 |
+
"<|tl|>": 50348,
|
1599 |
+
"<|transcribe|>": 50360,
|
1600 |
+
"<|translate|>": 50359,
|
1601 |
+
"<|tr|>": 50268,
|
1602 |
+
"<|tt|>": 50351,
|
1603 |
+
"<|uk|>": 50280,
|
1604 |
+
"<|ur|>": 50290,
|
1605 |
+
"<|uz|>": 50337,
|
1606 |
+
"<|vi|>": 50278,
|
1607 |
+
"<|yi|>": 50335,
|
1608 |
+
"<|yo|>": 50325,
|
1609 |
+
"<|yue|>": 50358,
|
1610 |
+
"<|zh|>": 50260
|
1611 |
+
}
|
nb-distil-large-init/config.json
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"alignment_heads": [
|
6 |
+
[
|
7 |
+
7,
|
8 |
+
0
|
9 |
+
],
|
10 |
+
[
|
11 |
+
10,
|
12 |
+
17
|
13 |
+
],
|
14 |
+
[
|
15 |
+
12,
|
16 |
+
18
|
17 |
+
],
|
18 |
+
[
|
19 |
+
13,
|
20 |
+
12
|
21 |
+
],
|
22 |
+
[
|
23 |
+
16,
|
24 |
+
1
|
25 |
+
],
|
26 |
+
[
|
27 |
+
17,
|
28 |
+
14
|
29 |
+
],
|
30 |
+
[
|
31 |
+
19,
|
32 |
+
11
|
33 |
+
],
|
34 |
+
[
|
35 |
+
21,
|
36 |
+
4
|
37 |
+
],
|
38 |
+
[
|
39 |
+
24,
|
40 |
+
1
|
41 |
+
],
|
42 |
+
[
|
43 |
+
25,
|
44 |
+
6
|
45 |
+
]
|
46 |
+
],
|
47 |
+
"apply_spec_augment": false,
|
48 |
+
"architectures": [
|
49 |
+
"WhisperForConditionalGeneration"
|
50 |
+
],
|
51 |
+
"attention_dropout": 0,
|
52 |
+
"begin_suppress_tokens": [
|
53 |
+
220,
|
54 |
+
50257
|
55 |
+
],
|
56 |
+
"bos_token_id": 50257,
|
57 |
+
"classifier_proj_size": 256,
|
58 |
+
"d_model": 1280,
|
59 |
+
"decoder_attention_heads": 20,
|
60 |
+
"decoder_ffn_dim": 5120,
|
61 |
+
"decoder_layerdrop": 0,
|
62 |
+
"decoder_layers": 2,
|
63 |
+
"decoder_start_token_id": 50258,
|
64 |
+
"dropout": 0,
|
65 |
+
"encoder_attention_heads": 20,
|
66 |
+
"encoder_ffn_dim": 5120,
|
67 |
+
"encoder_layerdrop": 0,
|
68 |
+
"encoder_layers": 32,
|
69 |
+
"eos_token_id": 50257,
|
70 |
+
"init_std": 0.02,
|
71 |
+
"is_encoder_decoder": true,
|
72 |
+
"lang_ids": [
|
73 |
+
50259,
|
74 |
+
50260,
|
75 |
+
50261,
|
76 |
+
50262,
|
77 |
+
50263,
|
78 |
+
50264,
|
79 |
+
50265,
|
80 |
+
50266,
|
81 |
+
50267,
|
82 |
+
50268,
|
83 |
+
50269,
|
84 |
+
50270,
|
85 |
+
50271,
|
86 |
+
50272,
|
87 |
+
50273,
|
88 |
+
50274,
|
89 |
+
50275,
|
90 |
+
50276,
|
91 |
+
50277,
|
92 |
+
50278,
|
93 |
+
50279,
|
94 |
+
50280,
|
95 |
+
50281,
|
96 |
+
50282,
|
97 |
+
50283,
|
98 |
+
50284,
|
99 |
+
50285,
|
100 |
+
50286,
|
101 |
+
50287,
|
102 |
+
50288,
|
103 |
+
50289,
|
104 |
+
50290,
|
105 |
+
50291,
|
106 |
+
50292,
|
107 |
+
50293,
|
108 |
+
50294,
|
109 |
+
50295,
|
110 |
+
50296,
|
111 |
+
50297,
|
112 |
+
50298,
|
113 |
+
50299,
|
114 |
+
50300,
|
115 |
+
50301,
|
116 |
+
50302,
|
117 |
+
50303,
|
118 |
+
50304,
|
119 |
+
50305,
|
120 |
+
50306,
|
121 |
+
50307,
|
122 |
+
50308,
|
123 |
+
50309,
|
124 |
+
50310,
|
125 |
+
50311,
|
126 |
+
50312,
|
127 |
+
50313,
|
128 |
+
50314,
|
129 |
+
50315,
|
130 |
+
50316,
|
131 |
+
50317,
|
132 |
+
50318,
|
133 |
+
50319,
|
134 |
+
50320,
|
135 |
+
50321,
|
136 |
+
50322,
|
137 |
+
50323,
|
138 |
+
50324,
|
139 |
+
50325,
|
140 |
+
50326,
|
141 |
+
50327,
|
142 |
+
50328,
|
143 |
+
50329,
|
144 |
+
50330,
|
145 |
+
50331,
|
146 |
+
50332,
|
147 |
+
50333,
|
148 |
+
50334,
|
149 |
+
50335,
|
150 |
+
50336,
|
151 |
+
50337,
|
152 |
+
50338,
|
153 |
+
50339,
|
154 |
+
50340,
|
155 |
+
50341,
|
156 |
+
50342,
|
157 |
+
50343,
|
158 |
+
50344,
|
159 |
+
50345,
|
160 |
+
50346,
|
161 |
+
50347,
|
162 |
+
50348,
|
163 |
+
50349,
|
164 |
+
50350,
|
165 |
+
50351,
|
166 |
+
50352,
|
167 |
+
50353,
|
168 |
+
50354,
|
169 |
+
50355,
|
170 |
+
50356,
|
171 |
+
50357,
|
172 |
+
50358
|
173 |
+
],
|
174 |
+
"mask_feature_length": 10,
|
175 |
+
"mask_feature_min_masks": 0,
|
176 |
+
"mask_feature_prob": 0,
|
177 |
+
"mask_time_length": 10,
|
178 |
+
"mask_time_min_masks": 2,
|
179 |
+
"mask_time_prob": 0.05,
|
180 |
+
"max_length": 448,
|
181 |
+
"max_source_positions": 1500,
|
182 |
+
"max_target_positions": 448,
|
183 |
+
"median_filter_width": 7,
|
184 |
+
"model_type": "whisper",
|
185 |
+
"num_hidden_layers": 32,
|
186 |
+
"num_mel_bins": 128,
|
187 |
+
"pad_token_id": 50256,
|
188 |
+
"scale_embedding": false,
|
189 |
+
"suppress_ids": [
|
190 |
+
1,
|
191 |
+
2,
|
192 |
+
7,
|
193 |
+
8,
|
194 |
+
9,
|
195 |
+
10,
|
196 |
+
14,
|
197 |
+
25,
|
198 |
+
26,
|
199 |
+
27,
|
200 |
+
28,
|
201 |
+
29,
|
202 |
+
31,
|
203 |
+
58,
|
204 |
+
59,
|
205 |
+
60,
|
206 |
+
61,
|
207 |
+
62,
|
208 |
+
63,
|
209 |
+
90,
|
210 |
+
91,
|
211 |
+
92,
|
212 |
+
93,
|
213 |
+
359,
|
214 |
+
503,
|
215 |
+
522,
|
216 |
+
542,
|
217 |
+
873,
|
218 |
+
893,
|
219 |
+
902,
|
220 |
+
918,
|
221 |
+
922,
|
222 |
+
931,
|
223 |
+
1350,
|
224 |
+
1853,
|
225 |
+
1982,
|
226 |
+
2460,
|
227 |
+
2627,
|
228 |
+
3246,
|
229 |
+
3253,
|
230 |
+
3268,
|
231 |
+
3536,
|
232 |
+
3846,
|
233 |
+
3961,
|
234 |
+
4183,
|
235 |
+
4667,
|
236 |
+
6585,
|
237 |
+
6647,
|
238 |
+
7273,
|
239 |
+
9061,
|
240 |
+
9383,
|
241 |
+
10428,
|
242 |
+
10929,
|
243 |
+
11938,
|
244 |
+
12033,
|
245 |
+
12331,
|
246 |
+
12562,
|
247 |
+
13793,
|
248 |
+
14157,
|
249 |
+
14635,
|
250 |
+
15265,
|
251 |
+
15618,
|
252 |
+
16553,
|
253 |
+
16604,
|
254 |
+
18362,
|
255 |
+
18956,
|
256 |
+
20075,
|
257 |
+
21675,
|
258 |
+
22520,
|
259 |
+
26130,
|
260 |
+
26161,
|
261 |
+
26435,
|
262 |
+
28279,
|
263 |
+
29464,
|
264 |
+
31650,
|
265 |
+
32302,
|
266 |
+
32470,
|
267 |
+
36865,
|
268 |
+
42863,
|
269 |
+
47425,
|
270 |
+
49870,
|
271 |
+
50254,
|
272 |
+
50258,
|
273 |
+
50359,
|
274 |
+
50360,
|
275 |
+
50361,
|
276 |
+
50362,
|
277 |
+
50363
|
278 |
+
],
|
279 |
+
"suppress_ids_begin": [
|
280 |
+
220,
|
281 |
+
50257
|
282 |
+
],
|
283 |
+
"torch_dtype": "float32",
|
284 |
+
"transformers_version": "4.46.2",
|
285 |
+
"use_cache": true,
|
286 |
+
"use_weighted_layer_sum": false,
|
287 |
+
"vocab_size": 51866
|
288 |
+
}
|
nb-distil-large-init/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60f608eb7887b643bfb0d6b11d3ad8564c648c296a90c1e558aa61075b1f2839
|
3 |
+
size 1512831199
|
nb-distil-large-init/generation_config.json
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alignment_heads": [
|
3 |
+
[
|
4 |
+
7,
|
5 |
+
0
|
6 |
+
],
|
7 |
+
[
|
8 |
+
10,
|
9 |
+
17
|
10 |
+
],
|
11 |
+
[
|
12 |
+
12,
|
13 |
+
18
|
14 |
+
],
|
15 |
+
[
|
16 |
+
13,
|
17 |
+
12
|
18 |
+
],
|
19 |
+
[
|
20 |
+
16,
|
21 |
+
1
|
22 |
+
],
|
23 |
+
[
|
24 |
+
17,
|
25 |
+
14
|
26 |
+
],
|
27 |
+
[
|
28 |
+
19,
|
29 |
+
11
|
30 |
+
],
|
31 |
+
[
|
32 |
+
21,
|
33 |
+
4
|
34 |
+
],
|
35 |
+
[
|
36 |
+
24,
|
37 |
+
1
|
38 |
+
],
|
39 |
+
[
|
40 |
+
25,
|
41 |
+
6
|
42 |
+
]
|
43 |
+
],
|
44 |
+
"begin_suppress_tokens": [
|
45 |
+
220,
|
46 |
+
50257
|
47 |
+
],
|
48 |
+
"bos_token_id": 50257,
|
49 |
+
"decoder_start_token_id": 50258,
|
50 |
+
"eos_token_id": 50257,
|
51 |
+
"forced_decoder_ids": [
|
52 |
+
[
|
53 |
+
1,
|
54 |
+
50288
|
55 |
+
],
|
56 |
+
[
|
57 |
+
2,
|
58 |
+
50360
|
59 |
+
],
|
60 |
+
[
|
61 |
+
3,
|
62 |
+
50364
|
63 |
+
]
|
64 |
+
],
|
65 |
+
"is_multilingual": true,
|
66 |
+
"lang_to_id": {
|
67 |
+
"<|af|>": 50327,
|
68 |
+
"<|am|>": 50334,
|
69 |
+
"<|ar|>": 50272,
|
70 |
+
"<|as|>": 50350,
|
71 |
+
"<|az|>": 50304,
|
72 |
+
"<|ba|>": 50355,
|
73 |
+
"<|be|>": 50330,
|
74 |
+
"<|bg|>": 50292,
|
75 |
+
"<|bn|>": 50302,
|
76 |
+
"<|bo|>": 50347,
|
77 |
+
"<|br|>": 50309,
|
78 |
+
"<|bs|>": 50315,
|
79 |
+
"<|ca|>": 50270,
|
80 |
+
"<|cs|>": 50283,
|
81 |
+
"<|cy|>": 50297,
|
82 |
+
"<|da|>": 50285,
|
83 |
+
"<|de|>": 50261,
|
84 |
+
"<|el|>": 50281,
|
85 |
+
"<|en|>": 50259,
|
86 |
+
"<|es|>": 50262,
|
87 |
+
"<|et|>": 50307,
|
88 |
+
"<|eu|>": 50310,
|
89 |
+
"<|fa|>": 50300,
|
90 |
+
"<|fi|>": 50277,
|
91 |
+
"<|fo|>": 50338,
|
92 |
+
"<|fr|>": 50265,
|
93 |
+
"<|gl|>": 50319,
|
94 |
+
"<|gu|>": 50333,
|
95 |
+
"<|haw|>": 50352,
|
96 |
+
"<|ha|>": 50354,
|
97 |
+
"<|he|>": 50279,
|
98 |
+
"<|hi|>": 50276,
|
99 |
+
"<|hr|>": 50291,
|
100 |
+
"<|ht|>": 50339,
|
101 |
+
"<|hu|>": 50286,
|
102 |
+
"<|hy|>": 50312,
|
103 |
+
"<|id|>": 50275,
|
104 |
+
"<|is|>": 50311,
|
105 |
+
"<|it|>": 50274,
|
106 |
+
"<|ja|>": 50266,
|
107 |
+
"<|jw|>": 50356,
|
108 |
+
"<|ka|>": 50329,
|
109 |
+
"<|kk|>": 50316,
|
110 |
+
"<|km|>": 50323,
|
111 |
+
"<|kn|>": 50306,
|
112 |
+
"<|ko|>": 50264,
|
113 |
+
"<|la|>": 50294,
|
114 |
+
"<|lb|>": 50345,
|
115 |
+
"<|ln|>": 50353,
|
116 |
+
"<|lo|>": 50336,
|
117 |
+
"<|lt|>": 50293,
|
118 |
+
"<|lv|>": 50301,
|
119 |
+
"<|mg|>": 50349,
|
120 |
+
"<|mi|>": 50295,
|
121 |
+
"<|mk|>": 50308,
|
122 |
+
"<|ml|>": 50296,
|
123 |
+
"<|mn|>": 50314,
|
124 |
+
"<|mr|>": 50320,
|
125 |
+
"<|ms|>": 50282,
|
126 |
+
"<|mt|>": 50343,
|
127 |
+
"<|my|>": 50346,
|
128 |
+
"<|ne|>": 50313,
|
129 |
+
"<|nl|>": 50271,
|
130 |
+
"<|nn|>": 50342,
|
131 |
+
"<|no|>": 50288,
|
132 |
+
"<|oc|>": 50328,
|
133 |
+
"<|pa|>": 50321,
|
134 |
+
"<|pl|>": 50269,
|
135 |
+
"<|ps|>": 50340,
|
136 |
+
"<|pt|>": 50267,
|
137 |
+
"<|ro|>": 50284,
|
138 |
+
"<|ru|>": 50263,
|
139 |
+
"<|sa|>": 50344,
|
140 |
+
"<|sd|>": 50332,
|
141 |
+
"<|si|>": 50322,
|
142 |
+
"<|sk|>": 50298,
|
143 |
+
"<|sl|>": 50305,
|
144 |
+
"<|sn|>": 50324,
|
145 |
+
"<|so|>": 50326,
|
146 |
+
"<|sq|>": 50317,
|
147 |
+
"<|sr|>": 50303,
|
148 |
+
"<|su|>": 50357,
|
149 |
+
"<|sv|>": 50273,
|
150 |
+
"<|sw|>": 50318,
|
151 |
+
"<|ta|>": 50287,
|
152 |
+
"<|te|>": 50299,
|
153 |
+
"<|tg|>": 50331,
|
154 |
+
"<|th|>": 50289,
|
155 |
+
"<|tk|>": 50341,
|
156 |
+
"<|tl|>": 50348,
|
157 |
+
"<|tr|>": 50268,
|
158 |
+
"<|tt|>": 50351,
|
159 |
+
"<|uk|>": 50280,
|
160 |
+
"<|ur|>": 50290,
|
161 |
+
"<|uz|>": 50337,
|
162 |
+
"<|vi|>": 50278,
|
163 |
+
"<|yi|>": 50335,
|
164 |
+
"<|yo|>": 50325,
|
165 |
+
"<|yue|>": 50358,
|
166 |
+
"<|zh|>": 50260
|
167 |
+
},
|
168 |
+
"language": "<|no|>",
|
169 |
+
"max_initial_timestamp_index": 1,
|
170 |
+
"max_length": 448,
|
171 |
+
"no_timestamps_token_id": 50364,
|
172 |
+
"pad_token_id": 50257,
|
173 |
+
"return_timestamps": false,
|
174 |
+
"suppress_tokens": [
|
175 |
+
1,
|
176 |
+
2,
|
177 |
+
7,
|
178 |
+
8,
|
179 |
+
9,
|
180 |
+
10,
|
181 |
+
14,
|
182 |
+
25,
|
183 |
+
26,
|
184 |
+
27,
|
185 |
+
28,
|
186 |
+
29,
|
187 |
+
31,
|
188 |
+
58,
|
189 |
+
59,
|
190 |
+
60,
|
191 |
+
61,
|
192 |
+
62,
|
193 |
+
63,
|
194 |
+
90,
|
195 |
+
91,
|
196 |
+
92,
|
197 |
+
93,
|
198 |
+
359,
|
199 |
+
503,
|
200 |
+
522,
|
201 |
+
542,
|
202 |
+
873,
|
203 |
+
893,
|
204 |
+
902,
|
205 |
+
918,
|
206 |
+
922,
|
207 |
+
931,
|
208 |
+
1350,
|
209 |
+
1853,
|
210 |
+
1982,
|
211 |
+
2460,
|
212 |
+
2627,
|
213 |
+
3246,
|
214 |
+
3253,
|
215 |
+
3268,
|
216 |
+
3536,
|
217 |
+
3846,
|
218 |
+
3961,
|
219 |
+
4183,
|
220 |
+
4667,
|
221 |
+
6585,
|
222 |
+
6647,
|
223 |
+
7273,
|
224 |
+
9061,
|
225 |
+
9383,
|
226 |
+
10428,
|
227 |
+
10929,
|
228 |
+
11938,
|
229 |
+
12033,
|
230 |
+
12331,
|
231 |
+
12562,
|
232 |
+
13793,
|
233 |
+
14157,
|
234 |
+
14635,
|
235 |
+
15265,
|
236 |
+
15618,
|
237 |
+
16553,
|
238 |
+
16604,
|
239 |
+
18362,
|
240 |
+
18956,
|
241 |
+
20075,
|
242 |
+
21675,
|
243 |
+
22520,
|
244 |
+
26130,
|
245 |
+
26161,
|
246 |
+
26435,
|
247 |
+
28279,
|
248 |
+
29464,
|
249 |
+
31650,
|
250 |
+
32302,
|
251 |
+
32470,
|
252 |
+
36865,
|
253 |
+
42863,
|
254 |
+
47425,
|
255 |
+
49870,
|
256 |
+
50254,
|
257 |
+
50258,
|
258 |
+
50359,
|
259 |
+
50360,
|
260 |
+
50361,
|
261 |
+
50362,
|
262 |
+
50363
|
263 |
+
],
|
264 |
+
"task": "transcribe",
|
265 |
+
"task_to_id": {
|
266 |
+
"transcribe": 50360,
|
267 |
+
"translate": 50359
|
268 |
+
},
|
269 |
+
"transformers_version": "4.46.2"
|
270 |
+
}
|
nb-distil-large-init/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
nb-distil-large-init/preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chunk_length": 30,
|
3 |
+
"feature_extractor_type": "WhisperFeatureExtractor",
|
4 |
+
"feature_size": 128,
|
5 |
+
"hop_length": 160,
|
6 |
+
"n_fft": 400,
|
7 |
+
"n_samples": 480000,
|
8 |
+
"nb_max_frames": 3000,
|
9 |
+
"padding_side": "right",
|
10 |
+
"padding_value": 0.0,
|
11 |
+
"processor_class": "WhisperProcessor",
|
12 |
+
"return_attention_mask": false,
|
13 |
+
"sampling_rate": 16000
|
14 |
+
}
|
nb-distil-large-init/special_tokens_map.json
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|startoftranscript|>",
|
4 |
+
"<|en|>",
|
5 |
+
"<|zh|>",
|
6 |
+
"<|de|>",
|
7 |
+
"<|es|>",
|
8 |
+
"<|ru|>",
|
9 |
+
"<|ko|>",
|
10 |
+
"<|fr|>",
|
11 |
+
"<|ja|>",
|
12 |
+
"<|pt|>",
|
13 |
+
"<|tr|>",
|
14 |
+
"<|pl|>",
|
15 |
+
"<|ca|>",
|
16 |
+
"<|nl|>",
|
17 |
+
"<|ar|>",
|
18 |
+
"<|sv|>",
|
19 |
+
"<|it|>",
|
20 |
+
"<|id|>",
|
21 |
+
"<|hi|>",
|
22 |
+
"<|fi|>",
|
23 |
+
"<|vi|>",
|
24 |
+
"<|he|>",
|
25 |
+
"<|uk|>",
|
26 |
+
"<|el|>",
|
27 |
+
"<|ms|>",
|
28 |
+
"<|cs|>",
|
29 |
+
"<|ro|>",
|
30 |
+
"<|da|>",
|
31 |
+
"<|hu|>",
|
32 |
+
"<|ta|>",
|
33 |
+
"<|no|>",
|
34 |
+
"<|th|>",
|
35 |
+
"<|ur|>",
|
36 |
+
"<|hr|>",
|
37 |
+
"<|bg|>",
|
38 |
+
"<|lt|>",
|
39 |
+
"<|la|>",
|
40 |
+
"<|mi|>",
|
41 |
+
"<|ml|>",
|
42 |
+
"<|cy|>",
|
43 |
+
"<|sk|>",
|
44 |
+
"<|te|>",
|
45 |
+
"<|fa|>",
|
46 |
+
"<|lv|>",
|
47 |
+
"<|bn|>",
|
48 |
+
"<|sr|>",
|
49 |
+
"<|az|>",
|
50 |
+
"<|sl|>",
|
51 |
+
"<|kn|>",
|
52 |
+
"<|et|>",
|
53 |
+
"<|mk|>",
|
54 |
+
"<|br|>",
|
55 |
+
"<|eu|>",
|
56 |
+
"<|is|>",
|
57 |
+
"<|hy|>",
|
58 |
+
"<|ne|>",
|
59 |
+
"<|mn|>",
|
60 |
+
"<|bs|>",
|
61 |
+
"<|kk|>",
|
62 |
+
"<|sq|>",
|
63 |
+
"<|sw|>",
|
64 |
+
"<|gl|>",
|
65 |
+
"<|mr|>",
|
66 |
+
"<|pa|>",
|
67 |
+
"<|si|>",
|
68 |
+
"<|km|>",
|
69 |
+
"<|sn|>",
|
70 |
+
"<|yo|>",
|
71 |
+
"<|so|>",
|
72 |
+
"<|af|>",
|
73 |
+
"<|oc|>",
|
74 |
+
"<|ka|>",
|
75 |
+
"<|be|>",
|
76 |
+
"<|tg|>",
|
77 |
+
"<|sd|>",
|
78 |
+
"<|gu|>",
|
79 |
+
"<|am|>",
|
80 |
+
"<|yi|>",
|
81 |
+
"<|lo|>",
|
82 |
+
"<|uz|>",
|
83 |
+
"<|fo|>",
|
84 |
+
"<|ht|>",
|
85 |
+
"<|ps|>",
|
86 |
+
"<|tk|>",
|
87 |
+
"<|nn|>",
|
88 |
+
"<|mt|>",
|
89 |
+
"<|sa|>",
|
90 |
+
"<|lb|>",
|
91 |
+
"<|my|>",
|
92 |
+
"<|bo|>",
|
93 |
+
"<|tl|>",
|
94 |
+
"<|mg|>",
|
95 |
+
"<|as|>",
|
96 |
+
"<|tt|>",
|
97 |
+
"<|haw|>",
|
98 |
+
"<|ln|>",
|
99 |
+
"<|ha|>",
|
100 |
+
"<|ba|>",
|
101 |
+
"<|jw|>",
|
102 |
+
"<|su|>",
|
103 |
+
"<|yue|>",
|
104 |
+
"<|translate|>",
|
105 |
+
"<|transcribe|>",
|
106 |
+
"<|startoflm|>",
|
107 |
+
"<|startofprev|>",
|
108 |
+
"<|nospeech|>",
|
109 |
+
"<|notimestamps|>"
|
110 |
+
],
|
111 |
+
"bos_token": {
|
112 |
+
"content": "<|endoftext|>",
|
113 |
+
"lstrip": false,
|
114 |
+
"normalized": false,
|
115 |
+
"rstrip": false,
|
116 |
+
"single_word": false
|
117 |
+
},
|
118 |
+
"eos_token": {
|
119 |
+
"content": "<|endoftext|>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false
|
124 |
+
},
|
125 |
+
"pad_token": {
|
126 |
+
"content": "<|endoftext|>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false
|
131 |
+
},
|
132 |
+
"unk_token": {
|
133 |
+
"content": "<|endoftext|>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false
|
138 |
+
}
|
139 |
+
}
|
nb-distil-large-init/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
nb-distil-large-init/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
run_distillation.py
ADDED
@@ -0,0 +1,2172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
|
18 |
+
"""
|
19 |
+
# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.
|
20 |
+
|
21 |
+
import logging
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import shutil
|
25 |
+
import string
|
26 |
+
import sys
|
27 |
+
import time
|
28 |
+
from dataclasses import dataclass, field
|
29 |
+
from functools import partial
|
30 |
+
from pathlib import Path
|
31 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
32 |
+
|
33 |
+
import datasets
|
34 |
+
import evaluate
|
35 |
+
import flax
|
36 |
+
import jax
|
37 |
+
import jax.numpy as jnp
|
38 |
+
import numpy as np
|
39 |
+
import optax
|
40 |
+
import torch
|
41 |
+
import transformers
|
42 |
+
from datasets import (
|
43 |
+
DatasetDict,
|
44 |
+
IterableDataset,
|
45 |
+
IterableDatasetDict,
|
46 |
+
concatenate_datasets,
|
47 |
+
interleave_datasets,
|
48 |
+
load_dataset,
|
49 |
+
)
|
50 |
+
from datasets.distributed import split_dataset_by_node
|
51 |
+
from flax import jax_utils, traverse_util
|
52 |
+
from flax.jax_utils import pad_shard_unpad, unreplicate
|
53 |
+
from flax.serialization import from_bytes, to_bytes
|
54 |
+
from flax.training import train_state
|
55 |
+
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
56 |
+
from huggingface_hub import Repository, create_repo
|
57 |
+
from jax.experimental.compilation_cache import compilation_cache as cc
|
58 |
+
from optax._src import linear_algebra
|
59 |
+
from torch.utils.data import DataLoader
|
60 |
+
from torchdata.datapipes.iter import IterableWrapper
|
61 |
+
from tqdm import tqdm
|
62 |
+
from transformers import (
|
63 |
+
AddedToken,
|
64 |
+
HfArgumentParser,
|
65 |
+
Seq2SeqTrainingArguments,
|
66 |
+
WhisperConfig,
|
67 |
+
WhisperFeatureExtractor,
|
68 |
+
WhisperProcessor,
|
69 |
+
WhisperTokenizerFast,
|
70 |
+
is_tensorboard_available,
|
71 |
+
is_wandb_available,
|
72 |
+
set_seed,
|
73 |
+
)
|
74 |
+
from transformers.file_utils import get_full_repo_name
|
75 |
+
from transformers.modeling_flax_outputs import FlaxBaseModelOutput
|
76 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer,EnglishTextNormalizer
|
77 |
+
from transformers.utils import check_min_version, send_example_telemetry
|
78 |
+
from transformers.utils.versions import require_version
|
79 |
+
|
80 |
+
from distil_whisper import FlaxWhisperForConditionalGeneration
|
81 |
+
|
82 |
+
|
83 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
84 |
+
check_min_version("4.27.0.dev0")
|
85 |
+
|
86 |
+
require_version(
|
87 |
+
"datasets>=1.18.0",
|
88 |
+
"To fix: pip install -r examples/flax/speech-recogintion/requirements.txt",
|
89 |
+
)
|
90 |
+
|
91 |
+
logger = logging.getLogger(__name__)
|
92 |
+
|
93 |
+
|
94 |
+
@flax.struct.dataclass
|
95 |
+
class ModelArguments:
|
96 |
+
"""
|
97 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
98 |
+
"""
|
99 |
+
|
100 |
+
model_name_or_path: str = field(
|
101 |
+
metadata={"help": ("Path to pretrained student model or model identifier from huggingface.co/models")}
|
102 |
+
)
|
103 |
+
teacher_model_name_or_path: str = field(
|
104 |
+
metadata={"help": ("Path to pretrained teacher model or model identifier from huggingface.co/models")}
|
105 |
+
)
|
106 |
+
config_name: Optional[str] = field(
|
107 |
+
default=None,
|
108 |
+
metadata={"help": "Pretrained config name or path if not the same as model_name"},
|
109 |
+
)
|
110 |
+
tokenizer_name: Optional[str] = field(
|
111 |
+
default=None,
|
112 |
+
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
|
113 |
+
)
|
114 |
+
feature_extractor_name: Optional[str] = field(
|
115 |
+
default=None,
|
116 |
+
metadata={"help": "feature extractor name or path if not the same as model_name"},
|
117 |
+
)
|
118 |
+
cache_dir: Optional[str] = field(
|
119 |
+
default=None,
|
120 |
+
metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")},
|
121 |
+
)
|
122 |
+
use_fast_tokenizer: bool = field(
|
123 |
+
default=True,
|
124 |
+
metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")},
|
125 |
+
)
|
126 |
+
model_revision: str = field(
|
127 |
+
default="main",
|
128 |
+
metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")},
|
129 |
+
)
|
130 |
+
subfolder: str = field(
|
131 |
+
default="",
|
132 |
+
metadata={
|
133 |
+
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
|
134 |
+
"specify the folder name here."
|
135 |
+
},
|
136 |
+
)
|
137 |
+
use_auth_token: bool = field(
|
138 |
+
default=False,
|
139 |
+
metadata={
|
140 |
+
"help": (
|
141 |
+
"Will use the token generated when running `transformers-cli login`"
|
142 |
+
" (necessary to use this script with private models)."
|
143 |
+
)
|
144 |
+
},
|
145 |
+
)
|
146 |
+
dtype: Optional[str] = field(
|
147 |
+
default="float32",
|
148 |
+
metadata={
|
149 |
+
"help": (
|
150 |
+
"Floating-point format in which the model weights should be initialized"
|
151 |
+
" and trained. Choose one of `[float32, float16, bfloat16]`."
|
152 |
+
)
|
153 |
+
},
|
154 |
+
)
|
155 |
+
load_with_scan_weights: bool = field(
|
156 |
+
default=False,
|
157 |
+
metadata={
|
158 |
+
"help": "Whether the pre-trained checkpoint has its weights stored in scan format. Set to True for scanned "
|
159 |
+
"weights, defaults to False for non-scan (unrolled) weights."
|
160 |
+
},
|
161 |
+
)
|
162 |
+
activation_dropout: float = field(
|
163 |
+
default=0.0,
|
164 |
+
metadata={"help": "The dropout ratio for activations inside the fully connected layer."},
|
165 |
+
)
|
166 |
+
attention_dropout: float = field(
|
167 |
+
default=0.0,
|
168 |
+
metadata={"help": "The dropout ratio for the attention probabilities."},
|
169 |
+
)
|
170 |
+
dropout: float = field(
|
171 |
+
default=0.0,
|
172 |
+
metadata={
|
173 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
174 |
+
},
|
175 |
+
)
|
176 |
+
|
177 |
+
|
178 |
+
@flax.struct.dataclass
|
179 |
+
class DataTrainingArguments:
|
180 |
+
"""
|
181 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
182 |
+
"""
|
183 |
+
|
184 |
+
train_dataset_name: str = field(
|
185 |
+
default=None,
|
186 |
+
metadata={
|
187 |
+
"help": "The name of the training dataset to use (via the datasets library). Load and combine "
|
188 |
+
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
|
189 |
+
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
|
190 |
+
},
|
191 |
+
)
|
192 |
+
train_dataset_config_name: Optional[str] = field(
|
193 |
+
default=None,
|
194 |
+
metadata={
|
195 |
+
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
|
196 |
+
"multiple datasets by separating dataset configs by a '+' symbol."
|
197 |
+
},
|
198 |
+
)
|
199 |
+
train_dataset_samples: str = field(
|
200 |
+
default=None,
|
201 |
+
metadata={
|
202 |
+
"help": "Number of samples in the training data. Load and combine "
|
203 |
+
"multiple datasets by separating dataset samples by a '+' symbol."
|
204 |
+
},
|
205 |
+
)
|
206 |
+
eval_dataset_name: str = field(
|
207 |
+
default=None,
|
208 |
+
metadata={
|
209 |
+
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
|
210 |
+
},
|
211 |
+
)
|
212 |
+
eval_dataset_config_name: Optional[str] = field(
|
213 |
+
default=None,
|
214 |
+
metadata={
|
215 |
+
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
|
216 |
+
},
|
217 |
+
)
|
218 |
+
dataset_cache_dir: Optional[str] = field(
|
219 |
+
default=None,
|
220 |
+
metadata={"help": "Path to cache directory for saving and loading datasets"},
|
221 |
+
)
|
222 |
+
overwrite_cache: bool = field(
|
223 |
+
default=False,
|
224 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
225 |
+
)
|
226 |
+
preprocessing_num_workers: Optional[int] = field(
|
227 |
+
default=None,
|
228 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
229 |
+
)
|
230 |
+
max_train_samples: Optional[int] = field(
|
231 |
+
default=None,
|
232 |
+
metadata={
|
233 |
+
"help": (
|
234 |
+
"For debugging purposes or quicker training, truncate the number of"
|
235 |
+
" training examples to this value if set."
|
236 |
+
)
|
237 |
+
},
|
238 |
+
)
|
239 |
+
max_eval_samples: Optional[int] = field(
|
240 |
+
default=None,
|
241 |
+
metadata={
|
242 |
+
"help": (
|
243 |
+
"For debugging purposes or quicker training, truncate the number of"
|
244 |
+
" evaluation examples to this value if set."
|
245 |
+
)
|
246 |
+
},
|
247 |
+
)
|
248 |
+
audio_column_name: str = field(
|
249 |
+
default="audio",
|
250 |
+
metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")},
|
251 |
+
)
|
252 |
+
train_text_column_name: str = field(
|
253 |
+
default="whisper_transcript",
|
254 |
+
metadata={
|
255 |
+
"help": (
|
256 |
+
"The name of the dataset column containing the text data. Defaults to"
|
257 |
+
" 'whisper_transcript'which is the pseudo-labelled Whisper"
|
258 |
+
" transcription data."
|
259 |
+
)
|
260 |
+
},
|
261 |
+
)
|
262 |
+
eval_text_column_name: str = field(
|
263 |
+
default="text",
|
264 |
+
metadata={
|
265 |
+
"help": (
|
266 |
+
"The name of the dataset column containing the text data. Defaults to"
|
267 |
+
" 'text', which is the original text data"
|
268 |
+
)
|
269 |
+
},
|
270 |
+
)
|
271 |
+
max_duration_in_seconds: float = field(
|
272 |
+
default=30.0,
|
273 |
+
metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")},
|
274 |
+
)
|
275 |
+
min_duration_in_seconds: float = field(
|
276 |
+
default=0.0,
|
277 |
+
metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")},
|
278 |
+
)
|
279 |
+
max_label_length: int = field(
|
280 |
+
default=128,
|
281 |
+
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
|
282 |
+
)
|
283 |
+
pad_target_to_multiple_of: Optional[int] = field(
|
284 |
+
default=None,
|
285 |
+
metadata={
|
286 |
+
"help": (
|
287 |
+
"If set will pad the target sequence to a multiple of the provided"
|
288 |
+
" value. This is important to avoid triggering recompilations on TPU."
|
289 |
+
" If unspecified, will default to padding the targets to max length."
|
290 |
+
)
|
291 |
+
},
|
292 |
+
)
|
293 |
+
preprocessing_only: bool = field(
|
294 |
+
default=False,
|
295 |
+
metadata={
|
296 |
+
"help": (
|
297 |
+
"Whether to only do data preprocessing and skip training. This is"
|
298 |
+
" especially useful when data preprocessing errors out in distributed"
|
299 |
+
" training due to timeout. In this case, one should run the"
|
300 |
+
" preprocessing in a non-distributed setup with"
|
301 |
+
" `preprocessing_only=True` so that the cached datasets can"
|
302 |
+
" consequently be loaded in distributed training"
|
303 |
+
)
|
304 |
+
},
|
305 |
+
)
|
306 |
+
train_split_name: str = field(
|
307 |
+
default="train",
|
308 |
+
metadata={
|
309 |
+
"help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
|
310 |
+
},
|
311 |
+
)
|
312 |
+
eval_split_name: str = field(
|
313 |
+
default="validation",
|
314 |
+
metadata={
|
315 |
+
"help": (
|
316 |
+
"The name of the evaluation data set split to use (via the datasets"
|
317 |
+
" library). Defaults to 'validation'"
|
318 |
+
)
|
319 |
+
},
|
320 |
+
)
|
321 |
+
wandb_project: str = field(
|
322 |
+
default="distil-whisper",
|
323 |
+
metadata={"help": "The name of the wandb project."},
|
324 |
+
)
|
325 |
+
wandb_name: str = field(
|
326 |
+
default=None,
|
327 |
+
metadata={"help": "The name of the wandb run."},
|
328 |
+
)
|
329 |
+
wandb_job_type: str = field(
|
330 |
+
default="distil-whisper",
|
331 |
+
metadata={"help": "The name of the wandb job type."},
|
332 |
+
)
|
333 |
+
wandb_dir: str = field(
|
334 |
+
default=None,
|
335 |
+
metadata={"help": "The absolute path to save the wandb logs."},
|
336 |
+
)
|
337 |
+
save_code_to_wandb: bool = field(
|
338 |
+
default=False,
|
339 |
+
metadata={
|
340 |
+
"help": (
|
341 |
+
"Whether to save main script to wandb. This is valuable for improving"
|
342 |
+
" experiment reproducibility and to diff code across experiments in"
|
343 |
+
" the UI."
|
344 |
+
)
|
345 |
+
},
|
346 |
+
)
|
347 |
+
streaming: bool = field(
|
348 |
+
default=True,
|
349 |
+
metadata={"help": "Whether to use Datasets' streaming mode to load and the data."},
|
350 |
+
)
|
351 |
+
wer_threshold: float = field(
|
352 |
+
default=None,
|
353 |
+
metadata={
|
354 |
+
"help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` "
|
355 |
+
"WER with the normalised transcriptions."
|
356 |
+
},
|
357 |
+
)
|
358 |
+
prefetch_size: int = field(
|
359 |
+
default=0,
|
360 |
+
metadata={"help": "Number of samples to pre-fetch if using an iterable dataset."},
|
361 |
+
)
|
362 |
+
timestamp_probability: float = field(
|
363 |
+
default=0.5, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
|
364 |
+
)
|
365 |
+
return_timestamps: bool = field(
|
366 |
+
default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
|
367 |
+
)
|
368 |
+
round_timestamps: bool = field(
|
369 |
+
default=False,
|
370 |
+
metadata={
|
371 |
+
"help": "Whether or not to round the timestamp tokens to the nearest tenth of a second."
|
372 |
+
"By default, Whisper predicts timestamps to the nearest hundredth of a second."
|
373 |
+
"Reducing the timestamp precision to one tenth of a second simplifies the timestamp"
|
374 |
+
"prediction task, at the expense of timestamp granularity."
|
375 |
+
},
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
@dataclass
|
380 |
+
class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments):
|
381 |
+
use_scan: Optional[bool] = field(
|
382 |
+
default=True,
|
383 |
+
metadata={
|
384 |
+
"help": (
|
385 |
+
"Whether or not to use `scan_with_axes` over the encoder and decoder blocks. Using scan results "
|
386 |
+
"in faster compile times and more efficient memory use during training, since all of the layers "
|
387 |
+
"in the encoder/decoder are stacked, and we perform a lax.scan over the stacked block to index "
|
388 |
+
"each layer. However, it results in slower inference time due to the overhead of stacking the "
|
389 |
+
"layers this way. Thus, we **always** default to disabling scan for the inference step."
|
390 |
+
)
|
391 |
+
},
|
392 |
+
)
|
393 |
+
freeze_encoder: Optional[bool] = field(
|
394 |
+
default=False,
|
395 |
+
metadata={
|
396 |
+
"help": (
|
397 |
+
"Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
|
398 |
+
"copied from the teacher model."
|
399 |
+
)
|
400 |
+
},
|
401 |
+
)
|
402 |
+
temperature: Optional[float] = field(
|
403 |
+
default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
|
404 |
+
)
|
405 |
+
kl_weight: Optional[float] = field(
|
406 |
+
default=1.0,
|
407 |
+
metadata={
|
408 |
+
"help": (
|
409 |
+
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
|
410 |
+
"computed between the teacher-student hidden states and attentions."
|
411 |
+
)
|
412 |
+
},
|
413 |
+
)
|
414 |
+
mse_weight: Optional[float] = field(
|
415 |
+
default=0.0,
|
416 |
+
metadata={
|
417 |
+
"help": (
|
418 |
+
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
|
419 |
+
"computed between the teacher-student hidden states and attentions."
|
420 |
+
)
|
421 |
+
},
|
422 |
+
)
|
423 |
+
precision: Optional[str] = field(
|
424 |
+
default="half_mixed",
|
425 |
+
metadata={
|
426 |
+
"help": (
|
427 |
+
"Precision with which run training, Can be one of `full`, `half_mixed` or `full_mixed`, the latter two"
|
428 |
+
"of which enable *mixed-precision* training. **Note that this only specifies the dtype of the computation "
|
429 |
+
"and optimizer state. It does not influence the dtype of model parameters.** An explanation of the three "
|
430 |
+
"settings is provided below:"
|
431 |
+
" 1. Full precision: forward pass, backward pass and optimiser states all in float32."
|
432 |
+
" 2. Half mixed precision: forward pass in bfloat16, backward pass and optimiser states in float32. This "
|
433 |
+
" corresponds to setting the dtype argument to bfloat16 when instantiating the model."
|
434 |
+
" 3. Full mixed precision: forward pass, backward pass and optimiser states all in bfloat16. The dtype "
|
435 |
+
" argument is set to bfloat16 for the forward pass, and the gradients computed with respect to the bfloat16 "
|
436 |
+
" parameters in the backward pass (giving bfloat16 gradients). The new optimiser states and parameter "
|
437 |
+
" updates are computed in float32 by upcasting the bfloat16 gradients and optimiser states to float32 "
|
438 |
+
" prior to the optimiser update step. The optimiser states are returned in float32 (but not saved to "
|
439 |
+
" memory) and then downcasted to bfloat16 (saved to memory) for the subsequent train step."
|
440 |
+
"For further details, refer to https://github.com/deepmind/optax/discussions/336"
|
441 |
+
)
|
442 |
+
},
|
443 |
+
)
|
444 |
+
compilation_cache: Optional[bool] = field(
|
445 |
+
default=False,
|
446 |
+
metadata={
|
447 |
+
"help": (
|
448 |
+
"Whether to enable the JAX (experimental) compilation cache. The compilation step is *cached* the "
|
449 |
+
"first time it is run. Successive compilation steps for the same function utilise the cache to reduce"
|
450 |
+
"the compilation time."
|
451 |
+
)
|
452 |
+
},
|
453 |
+
)
|
454 |
+
save_train_state: Optional[bool] = field(
|
455 |
+
default=False,
|
456 |
+
metadata={
|
457 |
+
"help": "Whether or not to save the Flax Train State on each `save_steps` steps. Required if you intend"
|
458 |
+
"to resume training from partial training runs. If False, only the model weights will be saved."
|
459 |
+
"If True, both the model weights and Flax Train state will be saved."
|
460 |
+
},
|
461 |
+
)
|
462 |
+
|
463 |
+
|
464 |
+
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
|
465 |
+
"""
|
466 |
+
Shift label ids one token to the right.
|
467 |
+
"""
|
468 |
+
shifted_label_ids = np.zeros_like(label_ids)
|
469 |
+
shifted_label_ids[:, 1:] = label_ids[:, :-1]
|
470 |
+
shifted_label_ids[:, 0] = decoder_start_token_id
|
471 |
+
|
472 |
+
return shifted_label_ids
|
473 |
+
|
474 |
+
|
475 |
+
@flax.struct.dataclass
|
476 |
+
class FlaxDataCollatorSpeechSeq2SeqWithPadding:
|
477 |
+
"""
|
478 |
+
Data collator that will dynamically pad the inputs received.
|
479 |
+
Args:
|
480 |
+
processor ([`Wav2Vec2Processor`])
|
481 |
+
The processor used for proccessing the data.
|
482 |
+
decoder_start_token_id (:obj: `int`)
|
483 |
+
The start-of-sequence token id of the decoder.
|
484 |
+
decoder_prev_token_id (:obj: `int`)
|
485 |
+
The start-of-prompt token id of the decoder
|
486 |
+
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
487 |
+
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
|
488 |
+
among:
|
489 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
490 |
+
sequence if provided).
|
491 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
492 |
+
maximum acceptable input length for the model if that argument is not provided.
|
493 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
494 |
+
different lengths).
|
495 |
+
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
496 |
+
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
|
497 |
+
See above for details.
|
498 |
+
max_target_length (:obj:`int`, `optional`):
|
499 |
+
Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
|
500 |
+
"""
|
501 |
+
|
502 |
+
processor: Any
|
503 |
+
decoder_start_token_id: int
|
504 |
+
decoder_prev_token_id: int
|
505 |
+
input_padding: Union[bool, str] = "max_length"
|
506 |
+
target_padding: Union[bool, str] = "max_length"
|
507 |
+
max_target_length: Optional[int] = None
|
508 |
+
|
509 |
+
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
|
510 |
+
# split inputs and labels since they have to be of different lengths and need
|
511 |
+
# different padding methods
|
512 |
+
model_input_name = self.processor.model_input_names[0]
|
513 |
+
|
514 |
+
# dataloader returns a list of features which we convert to a dict
|
515 |
+
input_features = {model_input_name: [feature[model_input_name] for feature in features]}
|
516 |
+
label_features = {"input_ids": [feature["labels"] for feature in features]}
|
517 |
+
|
518 |
+
# reformat list to dict and set to pytorch format
|
519 |
+
batch = self.processor.feature_extractor.pad(
|
520 |
+
input_features,
|
521 |
+
padding=self.input_padding,
|
522 |
+
return_tensors="np",
|
523 |
+
)
|
524 |
+
|
525 |
+
labels_batch = self.processor.tokenizer.pad(
|
526 |
+
label_features,
|
527 |
+
max_length=self.max_target_length,
|
528 |
+
padding=self.target_padding,
|
529 |
+
return_tensors="np",
|
530 |
+
)
|
531 |
+
|
532 |
+
# if bos token is appended in previous tokenization step,
|
533 |
+
# cut bos token here as it's append later anyways
|
534 |
+
labels = labels_batch["input_ids"]
|
535 |
+
if set(np.unique(labels[:, 0])).issubset({self.decoder_start_token_id, self.decoder_prev_token_id}):
|
536 |
+
decoder_input_ids = labels[:, :-1]
|
537 |
+
labels = labels[:, 1:]
|
538 |
+
labels_batch.attention_mask = labels_batch.attention_mask[:, 1:]
|
539 |
+
else:
|
540 |
+
decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id)
|
541 |
+
|
542 |
+
# replace padding with -100 to ignore correctly when computing the loss
|
543 |
+
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1))
|
544 |
+
labels = labels.filled(fill_value=-100)
|
545 |
+
|
546 |
+
# replace initial prompt tokens with -100 to ignore correctly when computing the loss
|
547 |
+
bos_index = np.argmax(labels == self.decoder_start_token_id, axis=1)
|
548 |
+
prompt_mask = np.arange(labels.shape[1]) < bos_index[:, None]
|
549 |
+
labels = np.where(prompt_mask, -100, labels)
|
550 |
+
|
551 |
+
batch["labels"] = labels
|
552 |
+
batch["decoder_input_ids"] = decoder_input_ids
|
553 |
+
|
554 |
+
return batch
|
555 |
+
|
556 |
+
|
557 |
+
def get_data_loader(
|
558 |
+
seed: int,
|
559 |
+
dataset: IterableDataset,
|
560 |
+
batch_size: int,
|
561 |
+
data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding,
|
562 |
+
shuffle: bool = False,
|
563 |
+
drop_last: bool = True,
|
564 |
+
dataloader_num_workers: int = 0,
|
565 |
+
skip_batches: int = 0,
|
566 |
+
pin_memory: bool = True,
|
567 |
+
prefetch_size: int = 0,
|
568 |
+
) -> DataLoader:
|
569 |
+
"""
|
570 |
+
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
|
571 |
+
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
|
572 |
+
|
573 |
+
Args:
|
574 |
+
seed (int): Numpy seed for generating pseudo random numbers. Used if shuffling the dataset.
|
575 |
+
dataset (IterableDataset): streaming dataset from which to load the data.
|
576 |
+
batch_size (int): how many samples per batch to load.
|
577 |
+
data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a
|
578 |
+
mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.
|
579 |
+
shuffle (bool, optional): set to `True` to have the batches reshuffled.
|
580 |
+
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
|
581 |
+
if the dataset size is not divisible by the batch size. If ``False`` and
|
582 |
+
the size of dataset is not divisible by the batch size, then the last batch
|
583 |
+
will be smaller. (default: ``False``)
|
584 |
+
dataloader_num_workers (int, optional): how many subprocesses to use for data
|
585 |
+
loading. ``0`` means that the data will be loaded in the main process.
|
586 |
+
(default: ``0``)
|
587 |
+
skip_batches (int, optional): Efficiently skip the first `skip_batches`.
|
588 |
+
pin_memory (bool, optional): If ``True``, the data loader will copy Tensors
|
589 |
+
into device/CUDA pinned memory before returning them. If your data elements
|
590 |
+
are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type,
|
591 |
+
see the example below.
|
592 |
+
|
593 |
+
"""
|
594 |
+
if shuffle:
|
595 |
+
dataset = dataset.shuffle(seed)
|
596 |
+
|
597 |
+
if skip_batches > 0:
|
598 |
+
dataset = dataset.skip(skip_batches * batch_size)
|
599 |
+
|
600 |
+
if prefetch_size > 0:
|
601 |
+
dataset = IterableWrapper(dataset)
|
602 |
+
dataset = dataset.prefetch(prefetch_size)
|
603 |
+
|
604 |
+
num_of_hosts = jax.process_count()
|
605 |
+
dataset = split_dataset_by_node(dataset, rank=jax.process_index(), world_size=num_of_hosts)
|
606 |
+
|
607 |
+
assert batch_size % num_of_hosts == 0, "Batch size must be divisible by the number of hosts."
|
608 |
+
if dataset.n_shards < dataloader_num_workers:
|
609 |
+
dataloader_num_workers = dataset.n_shards
|
610 |
+
|
611 |
+
data_loader = DataLoader(
|
612 |
+
dataset,
|
613 |
+
batch_size=batch_size //num_of_hosts,
|
614 |
+
drop_last=drop_last,
|
615 |
+
pin_memory=pin_memory,
|
616 |
+
collate_fn=data_collator,
|
617 |
+
num_workers=dataloader_num_workers,
|
618 |
+
)
|
619 |
+
|
620 |
+
return data_loader
|
621 |
+
|
622 |
+
|
623 |
+
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
|
624 |
+
ordering_and_checkpoint_path = []
|
625 |
+
|
626 |
+
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
|
627 |
+
|
628 |
+
for path in glob_checkpoints:
|
629 |
+
if use_mtime:
|
630 |
+
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
|
631 |
+
else:
|
632 |
+
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
|
633 |
+
if regex_match is not None and regex_match.groups() is not None:
|
634 |
+
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
|
635 |
+
|
636 |
+
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
|
637 |
+
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
|
638 |
+
return checkpoints_sorted
|
639 |
+
|
640 |
+
|
641 |
+
def rotate_checkpoints(
|
642 |
+
save_total_limit=None, use_mtime=False, output_dir=None, checkpoint_prefix="checkpoint"
|
643 |
+
) -> None:
|
644 |
+
if save_total_limit is None or save_total_limit <= 0:
|
645 |
+
return
|
646 |
+
|
647 |
+
# Check if we should delete older checkpoint(s)
|
648 |
+
checkpoints_sorted = sorted_checkpoints(
|
649 |
+
use_mtime=use_mtime, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix
|
650 |
+
)
|
651 |
+
if len(checkpoints_sorted) <= save_total_limit:
|
652 |
+
return
|
653 |
+
|
654 |
+
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
|
655 |
+
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
|
656 |
+
for checkpoint in checkpoints_to_be_deleted:
|
657 |
+
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
|
658 |
+
shutil.rmtree(checkpoint, ignore_errors=True)
|
659 |
+
|
660 |
+
|
661 |
+
def to_fp32(t):
|
662 |
+
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
|
663 |
+
|
664 |
+
|
665 |
+
def to_bf16(t):
|
666 |
+
return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t)
|
667 |
+
|
668 |
+
|
669 |
+
class TrainState(train_state.TrainState):
|
670 |
+
dropout_rng: jnp.ndarray
|
671 |
+
max_grad_norm: float
|
672 |
+
|
673 |
+
def apply_gradients(self, *, grads, to_dtype: to_fp32, **kwargs):
|
674 |
+
"""Updates `step`, `params`, `opt_state` and `**kwargs` in return value, clipping the
|
675 |
+
gradients by the maximum grad norm.
|
676 |
+
|
677 |
+
Note that internally this function calls `.tx.update()` followed by a call
|
678 |
+
to `optax.apply_updates()` to update `params` and `opt_state`.
|
679 |
+
|
680 |
+
Args:
|
681 |
+
grads: Gradients that have the same pytree structure as `.params`.
|
682 |
+
**kwargs: Additional dataclass attributes that should be `.replace()`-ed.
|
683 |
+
|
684 |
+
Returns:
|
685 |
+
An updated instance of `self` with `step` incremented by one, `params`
|
686 |
+
and `opt_state` updated by applying `grads`, and additional attributes
|
687 |
+
replaced as specified by `kwargs`.
|
688 |
+
"""
|
689 |
+
# clip gradients by global l2 norm
|
690 |
+
casted_max_grad_norm = to_dtype(self.max_grad_norm)
|
691 |
+
g_norm = linear_algebra.global_norm(grads)
|
692 |
+
g_norm = jnp.maximum(casted_max_grad_norm, g_norm)
|
693 |
+
grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads)
|
694 |
+
|
695 |
+
# perform update step in fp32 and subsequently downcast optimizer states if mixed precision training
|
696 |
+
# grads and opt_state in bf16 (need to upcast), params in fp32 (leave as is)
|
697 |
+
updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params)
|
698 |
+
|
699 |
+
new_params = optax.apply_updates(self.params, updates)
|
700 |
+
|
701 |
+
return self.replace(
|
702 |
+
step=self.step + 1,
|
703 |
+
params=new_params,
|
704 |
+
opt_state=to_dtype(new_opt_state),
|
705 |
+
**kwargs,
|
706 |
+
)
|
707 |
+
|
708 |
+
@classmethod
|
709 |
+
def create(cls, *, apply_fn, params, tx, to_dtype: to_fp32, **kwargs):
|
710 |
+
"""Creates a new instance with `step=0` and initialized `opt_state`."""
|
711 |
+
# downcast optimizer state to bf16 if mixed-precision training
|
712 |
+
opt_state = tx.init(to_dtype(params))
|
713 |
+
return cls(
|
714 |
+
step=0,
|
715 |
+
apply_fn=apply_fn,
|
716 |
+
params=params,
|
717 |
+
tx=tx,
|
718 |
+
opt_state=opt_state,
|
719 |
+
**kwargs,
|
720 |
+
)
|
721 |
+
|
722 |
+
def replicate(self):
|
723 |
+
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
|
724 |
+
|
725 |
+
def unreplicate(self):
|
726 |
+
return jax_utils.unreplicate(self)
|
727 |
+
|
728 |
+
def save_state(self, output_dir, save_total_limit=None, checkpoint_prefix="checkpoint"):
|
729 |
+
step = int(jax.device_get(unreplicate(self.step)))
|
730 |
+
serialized_state = to_bytes(self.unreplicate())
|
731 |
+
|
732 |
+
output_file = Path(os.path.join(output_dir, f"{checkpoint_prefix}-{step}", "train_state.msgpack"))
|
733 |
+
output_file.parent.mkdir(exist_ok=True, parents=True)
|
734 |
+
|
735 |
+
with output_file.open("wb") as f:
|
736 |
+
f.write(serialized_state)
|
737 |
+
|
738 |
+
logger.info(f"Flax train state saved in {output_file}")
|
739 |
+
rotate_checkpoints(
|
740 |
+
save_total_limit=save_total_limit, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix
|
741 |
+
)
|
742 |
+
|
743 |
+
|
744 |
+
def save_hf_weights(
|
745 |
+
student_state: TrainState,
|
746 |
+
student_model: FlaxWhisperForConditionalGeneration,
|
747 |
+
processor: WhisperProcessor,
|
748 |
+
output_dir: str,
|
749 |
+
cur_step: int,
|
750 |
+
total_train_steps: int,
|
751 |
+
use_scan: bool = True,
|
752 |
+
checkpoint_prefix: str = "checkpoint",
|
753 |
+
) -> None:
|
754 |
+
# always disable scan in the params / model so that we can load from PyTorch directly - this is a no-op if we're not using scan for training
|
755 |
+
student_state_params = unreplicate(student_state.params)
|
756 |
+
student_state_params = student_model.convert_scan_to_unroll(student_state_params)
|
757 |
+
student_params = jax.device_get(student_state_params)
|
758 |
+
student_model.disable_scan()
|
759 |
+
|
760 |
+
if cur_step != total_train_steps:
|
761 |
+
output_dir = os.path.join(output_dir, f"{checkpoint_prefix}-{cur_step}")
|
762 |
+
os.makedirs(output_dir, exist_ok=True)
|
763 |
+
|
764 |
+
student_model.save_pretrained(output_dir, params=student_params)
|
765 |
+
processor.save_pretrained(output_dir)
|
766 |
+
|
767 |
+
# re-enable scan only if required for training
|
768 |
+
if use_scan:
|
769 |
+
student_model.enable_scan()
|
770 |
+
|
771 |
+
|
772 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step, logging_steps):
|
773 |
+
summary_writer.scalar("train/time", train_time, step)
|
774 |
+
# Check if train_metrics is empty
|
775 |
+
if not train_metrics:
|
776 |
+
print("DEBUG: train_metrics is empty; This is probably a bug that needs fixing.")
|
777 |
+
return # Early exit if train_metrics is empty to avoid further processing
|
778 |
+
|
779 |
+
train_metrics = get_metrics(train_metrics)
|
780 |
+
for key, vals in train_metrics.items():
|
781 |
+
steps_arr = np.arange(0, step, logging_steps)[-len(vals) :]
|
782 |
+
tag = f"train/{key}"
|
783 |
+
for i, val in enumerate(vals):
|
784 |
+
summary_writer.scalar(tag, val, steps_arr[i])
|
785 |
+
|
786 |
+
|
787 |
+
def write_eval_metric(summary_writer, eval_metrics, step, prefix="eval"):
|
788 |
+
for metric_name, value in eval_metrics.items():
|
789 |
+
summary_writer.scalar(f"{prefix}/{metric_name}", value, step)
|
790 |
+
|
791 |
+
|
792 |
+
def write_wandb_metric(wandb_logger, metrics, train_time, step, epoch, prefix="train"):
|
793 |
+
log_metrics = {}
|
794 |
+
for k, v in metrics.items():
|
795 |
+
log_metrics[f"{prefix}/{k}"] = v
|
796 |
+
log_metrics[f"{prefix}/time"] = train_time
|
797 |
+
log_metrics[f"{prefix}/epoch"] = epoch
|
798 |
+
wandb_logger.log(log_metrics, step)
|
799 |
+
|
800 |
+
|
801 |
+
def write_wandb_pred(
|
802 |
+
wandb_logger, pred_str, label_str, norm_pred_str, norm_label_str, cur_step, prefix="eval", num_lines=200000
|
803 |
+
):
|
804 |
+
# pretty name for current step: step 50000 -> step 50k
|
805 |
+
cur_step_pretty = f"{int(cur_step // 1000)}k" if cur_step > 1000 else cur_step
|
806 |
+
# convert str data to a wandb compatible format
|
807 |
+
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
|
808 |
+
# log as a table with the appropriate headers
|
809 |
+
wandb_logger.log(
|
810 |
+
{
|
811 |
+
f"predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table(
|
812 |
+
columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data[:num_lines]
|
813 |
+
)
|
814 |
+
},
|
815 |
+
cur_step,
|
816 |
+
)
|
817 |
+
# log incorrect normalised predictions
|
818 |
+
str_data = np.asarray(str_data)
|
819 |
+
str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
|
820 |
+
# log as a table with the appropriate headers
|
821 |
+
wandb_logger.log(
|
822 |
+
{
|
823 |
+
f"incorrect_predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table(
|
824 |
+
columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data_incorrect[:num_lines]
|
825 |
+
)
|
826 |
+
},
|
827 |
+
cur_step,
|
828 |
+
)
|
829 |
+
|
830 |
+
|
831 |
+
def create_learning_rate_fn(
|
832 |
+
num_train_steps: int, lr_scheduler_type: str, num_warmup_steps: int, learning_rate: float
|
833 |
+
) -> Callable[[int], jnp.array]:
|
834 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
835 |
+
lr_scheduler_types = ("linear", "constant_with_warmup")
|
836 |
+
|
837 |
+
if lr_scheduler_type not in lr_scheduler_types:
|
838 |
+
raise ValueError(
|
839 |
+
f"lr_scheduler_type of type {lr_scheduler_type} not supported, choose from {lr_scheduler_types}."
|
840 |
+
)
|
841 |
+
|
842 |
+
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
843 |
+
decay_fn = optax.linear_schedule(
|
844 |
+
init_value=learning_rate,
|
845 |
+
end_value=0 if lr_scheduler_type == "linear" else learning_rate,
|
846 |
+
transition_steps=num_train_steps - num_warmup_steps,
|
847 |
+
)
|
848 |
+
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
849 |
+
return schedule_fn
|
850 |
+
|
851 |
+
|
852 |
+
def convert_dataset_str_to_list(
|
853 |
+
dataset_names,
|
854 |
+
dataset_config_names,
|
855 |
+
splits=None,
|
856 |
+
text_column_names=None,
|
857 |
+
dataset_samples=None,
|
858 |
+
default_split="train",
|
859 |
+
):
|
860 |
+
if isinstance(dataset_names, str):
|
861 |
+
dataset_names = dataset_names.split("+")
|
862 |
+
|
863 |
+
# we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary
|
864 |
+
for i in range(len(dataset_names)):
|
865 |
+
ds_name = dataset_names[i]
|
866 |
+
dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name
|
867 |
+
|
868 |
+
dataset_config_names = dataset_config_names.split("+")
|
869 |
+
splits = splits.split("+") if splits is not None else None
|
870 |
+
text_column_names = text_column_names.split("+") if text_column_names is not None else None
|
871 |
+
dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
|
872 |
+
|
873 |
+
# basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
|
874 |
+
if len(dataset_names) != len(dataset_config_names):
|
875 |
+
raise ValueError(
|
876 |
+
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
|
877 |
+
f" {len(dataset_config_names)} configs."
|
878 |
+
)
|
879 |
+
|
880 |
+
if splits is not None and len(splits) != len(dataset_names):
|
881 |
+
raise ValueError(
|
882 |
+
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
|
883 |
+
)
|
884 |
+
|
885 |
+
if text_column_names is not None and len(text_column_names) != len(dataset_names):
|
886 |
+
raise ValueError(
|
887 |
+
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
|
888 |
+
f" {len(text_column_names)} text column names."
|
889 |
+
)
|
890 |
+
|
891 |
+
if dataset_samples is not None:
|
892 |
+
if len(dataset_samples) != len(dataset_names):
|
893 |
+
raise ValueError(
|
894 |
+
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
|
895 |
+
f"{len(dataset_samples)} samples."
|
896 |
+
)
|
897 |
+
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
|
898 |
+
else:
|
899 |
+
dataset_samples = [None] * len(dataset_names)
|
900 |
+
|
901 |
+
text_column_names = (
|
902 |
+
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
|
903 |
+
)
|
904 |
+
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
|
905 |
+
|
906 |
+
dataset_names_dict = []
|
907 |
+
for i, ds_name in enumerate(dataset_names):
|
908 |
+
dataset_names_dict.append(
|
909 |
+
{
|
910 |
+
"name": ds_name,
|
911 |
+
"config": dataset_config_names[i],
|
912 |
+
"split": splits[i],
|
913 |
+
"text_column_name": text_column_names[i],
|
914 |
+
"samples": dataset_samples[i],
|
915 |
+
}
|
916 |
+
)
|
917 |
+
return dataset_names_dict
|
918 |
+
|
919 |
+
|
920 |
+
def load_multiple_datasets(
|
921 |
+
dataset_names: Union[List, str],
|
922 |
+
dataset_config_names: Union[List, str],
|
923 |
+
splits: Optional[Union[List, str]] = None,
|
924 |
+
text_column_names: Optional[List] = None,
|
925 |
+
sampling_rate: Optional[int] = 16000,
|
926 |
+
stopping_strategy: Optional[str] = "first_exhausted",
|
927 |
+
dataset_samples: Optional[Union[List, np.array]] = None,
|
928 |
+
streaming: bool = True,
|
929 |
+
seed: int = None,
|
930 |
+
**kwargs,
|
931 |
+
) -> IterableDataset:
|
932 |
+
dataset_names_dict = convert_dataset_str_to_list(
|
933 |
+
dataset_names, dataset_config_names, splits, text_column_names, dataset_samples
|
934 |
+
)
|
935 |
+
|
936 |
+
if dataset_samples is not None:
|
937 |
+
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
|
938 |
+
probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
|
939 |
+
else:
|
940 |
+
probabilities = None
|
941 |
+
|
942 |
+
if len(dataset_names_dict) == 1:
|
943 |
+
dataset_dict = dataset_names_dict[0]
|
944 |
+
# we have a single dataset so just return it as is
|
945 |
+
return load_dataset(
|
946 |
+
dataset_dict["name"],
|
947 |
+
dataset_dict["config"],
|
948 |
+
split=dataset_dict["split"],
|
949 |
+
streaming=streaming,
|
950 |
+
**kwargs,
|
951 |
+
)
|
952 |
+
|
953 |
+
all_datasets = []
|
954 |
+
# iterate over the datasets we want to interleave
|
955 |
+
for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
|
956 |
+
dataset = load_dataset(
|
957 |
+
dataset_dict["name"],
|
958 |
+
dataset_dict["config"],
|
959 |
+
split=dataset_dict["split"],
|
960 |
+
streaming=streaming,
|
961 |
+
**kwargs,
|
962 |
+
)
|
963 |
+
# resample to specified sampling rate
|
964 |
+
dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
|
965 |
+
dataset = dataset.remove_columns(
|
966 |
+
set(dataset.features.keys()) - {"audio", dataset_dict["text_column_name"], "whisper_transcript"}
|
967 |
+
)
|
968 |
+
all_datasets.append(dataset)
|
969 |
+
|
970 |
+
if streaming:
|
971 |
+
interleaved_dataset = interleave_datasets(
|
972 |
+
all_datasets,
|
973 |
+
stopping_strategy=stopping_strategy,
|
974 |
+
probabilities=probabilities,
|
975 |
+
seed=seed,
|
976 |
+
)
|
977 |
+
else:
|
978 |
+
interleaved_dataset = concatenate_datasets(all_datasets)
|
979 |
+
|
980 |
+
return interleaved_dataset
|
981 |
+
|
982 |
+
|
983 |
+
def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> dict:
|
984 |
+
"""Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used
|
985 |
+
for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers
|
986 |
+
in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer
|
987 |
+
3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer
|
988 |
+
2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely
|
989 |
+
the output of this function for the arguments (student_layers=3, teacher_layers=12)."""
|
990 |
+
layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int)
|
991 |
+
layer_intervals[-1] = teacher_layers - 1
|
992 |
+
layer_map = {}
|
993 |
+
|
994 |
+
for student_layer, teacher_layer in enumerate(layer_intervals):
|
995 |
+
layer_map[student_layer] = teacher_layer
|
996 |
+
|
997 |
+
return layer_map
|
998 |
+
|
999 |
+
|
1000 |
+
class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor):
|
1001 |
+
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
|
1002 |
+
"""
|
1003 |
+
Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation
|
1004 |
+
computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation
|
1005 |
+
in transformers, and matches to within 1e-5 abs tolerance.
|
1006 |
+
"""
|
1007 |
+
waveform = torch.from_numpy(waveform).type(torch.float32)
|
1008 |
+
|
1009 |
+
window = torch.hann_window(self.n_fft)
|
1010 |
+
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
|
1011 |
+
magnitudes = stft[..., :-1].abs() ** 2
|
1012 |
+
|
1013 |
+
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
|
1014 |
+
mel_spec = mel_filters.T @ magnitudes
|
1015 |
+
|
1016 |
+
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
1017 |
+
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
1018 |
+
log_spec = (log_spec + 4.0) / 4.0
|
1019 |
+
return log_spec.numpy()
|
1020 |
+
|
1021 |
+
|
1022 |
+
def main():
|
1023 |
+
# 1. Parse input arguments
|
1024 |
+
# See all possible arguments in src/transformers/training_args.py
|
1025 |
+
# or by passing the --help flag to this script.
|
1026 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
1027 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments))
|
1028 |
+
|
1029 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
1030 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
1031 |
+
# let's parse it to get our arguments.
|
1032 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
1033 |
+
else:
|
1034 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
1035 |
+
|
1036 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
1037 |
+
# information sent is the one passed as arguments along with your JAX/Flax versions.
|
1038 |
+
send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax")
|
1039 |
+
|
1040 |
+
# 2. Define remote logging - do this early so that we get the full traceback on our remote logs
|
1041 |
+
# Enable tensorboard only on the master node
|
1042 |
+
has_tensorboard = is_tensorboard_available()
|
1043 |
+
if has_tensorboard:
|
1044 |
+
if jax.process_index() == 0:
|
1045 |
+
try:
|
1046 |
+
from flax.metrics.tensorboard import SummaryWriter
|
1047 |
+
|
1048 |
+
summary_writer = SummaryWriter(log_dir=os.path.join(Path(training_args.output_dir), "runs"))
|
1049 |
+
except ImportError as ie:
|
1050 |
+
has_tensorboard = False
|
1051 |
+
logger.warning(
|
1052 |
+
"Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}"
|
1053 |
+
)
|
1054 |
+
else:
|
1055 |
+
logger.warning(
|
1056 |
+
"Unable to display metrics through TensorBoard because the package is not"
|
1057 |
+
" installed: Please run `pip install tensorboard` to enable."
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
# Enable wandb only on the master node
|
1061 |
+
has_wandb = is_wandb_available()
|
1062 |
+
if has_wandb:
|
1063 |
+
import wandb as wandb_logger
|
1064 |
+
|
1065 |
+
# Set up wandb run
|
1066 |
+
if jax.process_index() == 0:
|
1067 |
+
wandb_logger.init(
|
1068 |
+
project=data_args.wandb_project,
|
1069 |
+
name=data_args.wandb_name,
|
1070 |
+
job_type=data_args.wandb_job_type,
|
1071 |
+
dir=data_args.wandb_dir,
|
1072 |
+
save_code=data_args.save_code_to_wandb,
|
1073 |
+
)
|
1074 |
+
else:
|
1075 |
+
logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.")
|
1076 |
+
|
1077 |
+
# 3. Setup local logging
|
1078 |
+
# Make one log on every process with the configuration for debugging.
|
1079 |
+
logging.basicConfig(
|
1080 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
1081 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
1082 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
1083 |
+
)
|
1084 |
+
# Set the verbosity to info of the Transformers logger.
|
1085 |
+
# We only want one process per machine to log things on the screen.
|
1086 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
1087 |
+
if jax.process_index() == 0:
|
1088 |
+
datasets.utils.logging.set_verbosity_warning()
|
1089 |
+
transformers.utils.logging.set_verbosity_info()
|
1090 |
+
else:
|
1091 |
+
datasets.utils.logging.set_verbosity_error()
|
1092 |
+
transformers.utils.logging.set_verbosity_error()
|
1093 |
+
|
1094 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
1095 |
+
|
1096 |
+
# Check the output dir is valid
|
1097 |
+
if (
|
1098 |
+
os.path.exists(training_args.output_dir)
|
1099 |
+
and os.listdir(training_args.output_dir)
|
1100 |
+
and training_args.do_train
|
1101 |
+
and not training_args.overwrite_output_dir
|
1102 |
+
):
|
1103 |
+
raise ValueError(
|
1104 |
+
f"Output directory ({training_args.output_dir}) already exists and is not"
|
1105 |
+
" empty. Use `--overwrite_output_dir` to overcome."
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
# 4. Handle the repository creation
|
1109 |
+
if training_args.push_to_hub:
|
1110 |
+
if training_args.hub_model_id is None:
|
1111 |
+
repo_name = get_full_repo_name(
|
1112 |
+
Path(training_args.output_dir).absolute().name,
|
1113 |
+
token=training_args.hub_token,
|
1114 |
+
)
|
1115 |
+
else:
|
1116 |
+
repo_name = training_args.hub_model_id
|
1117 |
+
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
|
1118 |
+
repo = Repository(
|
1119 |
+
training_args.output_dir,
|
1120 |
+
clone_from=repo_name,
|
1121 |
+
token=training_args.hub_token,
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
if training_args.compilation_cache:
|
1125 |
+
cc.initialize_cache(os.path.join(model_args.cache_dir, "jax_cache"))
|
1126 |
+
|
1127 |
+
# 5. Load dataset
|
1128 |
+
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
1129 |
+
|
1130 |
+
# set seed for determinism
|
1131 |
+
set_seed(training_args.seed)
|
1132 |
+
|
1133 |
+
if training_args.do_train:
|
1134 |
+
raw_datasets["train"] = load_multiple_datasets(
|
1135 |
+
data_args.train_dataset_name,
|
1136 |
+
data_args.train_dataset_config_name,
|
1137 |
+
splits=data_args.train_split_name,
|
1138 |
+
streaming=data_args.streaming,
|
1139 |
+
dataset_samples=data_args.train_dataset_samples,
|
1140 |
+
seed=training_args.seed,
|
1141 |
+
trust_remote_code=True,
|
1142 |
+
cache_dir=data_args.dataset_cache_dir,
|
1143 |
+
token=True if model_args.use_auth_token else None,
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
if training_args.do_eval:
|
1147 |
+
dataset_names_dict = convert_dataset_str_to_list(
|
1148 |
+
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
|
1149 |
+
(
|
1150 |
+
data_args.eval_dataset_config_name
|
1151 |
+
if data_args.eval_dataset_config_name
|
1152 |
+
else data_args.train_dataset_config_name
|
1153 |
+
),
|
1154 |
+
splits=data_args.eval_split_name,
|
1155 |
+
text_column_names=data_args.eval_text_column_name,
|
1156 |
+
)
|
1157 |
+
all_eval_splits = []
|
1158 |
+
if len(dataset_names_dict) == 1:
|
1159 |
+
# load a single eval set
|
1160 |
+
dataset_dict = dataset_names_dict[0]
|
1161 |
+
all_eval_splits.append("eval")
|
1162 |
+
raw_datasets["eval"] = load_dataset(
|
1163 |
+
dataset_dict["name"],
|
1164 |
+
dataset_dict["config"],
|
1165 |
+
split=dataset_dict["split"],
|
1166 |
+
trust_remote_code=True,
|
1167 |
+
cache_dir=data_args.dataset_cache_dir,
|
1168 |
+
token=True if model_args.use_auth_token else None,
|
1169 |
+
streaming=data_args.streaming,
|
1170 |
+
)
|
1171 |
+
else:
|
1172 |
+
# load multiple eval sets
|
1173 |
+
for dataset_dict in dataset_names_dict:
|
1174 |
+
if dataset_dict["name"] == "esb/diagnostic-dataset":
|
1175 |
+
# for the ESB diagnostic dataset, the dataset name is effectively the config
|
1176 |
+
pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}"
|
1177 |
+
else:
|
1178 |
+
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
|
1179 |
+
all_eval_splits.append(pretty_name)
|
1180 |
+
raw_datasets[pretty_name] = load_dataset(
|
1181 |
+
dataset_dict["name"],
|
1182 |
+
dataset_dict["config"],
|
1183 |
+
split=dataset_dict["split"],
|
1184 |
+
cache_dir=data_args.dataset_cache_dir,
|
1185 |
+
token=True if model_args.use_auth_token else None,
|
1186 |
+
trust_remote_code=True,
|
1187 |
+
streaming=data_args.streaming,
|
1188 |
+
)
|
1189 |
+
features = raw_datasets[pretty_name].features.keys()
|
1190 |
+
if "text" not in features:
|
1191 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
|
1192 |
+
dataset_dict["text_column_name"], "text"
|
1193 |
+
)
|
1194 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
|
1195 |
+
set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"}
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
if not training_args.do_train and not training_args.do_eval:
|
1199 |
+
raise ValueError(
|
1200 |
+
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
raw_datasets_train_features = list(raw_datasets["train"].features.keys())
|
1204 |
+
|
1205 |
+
if data_args.audio_column_name not in raw_datasets_train_features:
|
1206 |
+
raise ValueError(
|
1207 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset"
|
1208 |
+
f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to"
|
1209 |
+
" the correct audio column - one of"
|
1210 |
+
f" {', '.join(raw_datasets_train_features)}."
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
if data_args.train_text_column_name not in raw_datasets_train_features:
|
1214 |
+
raise ValueError(
|
1215 |
+
f"--train_text_column_name {data_args.train_text_column_name} not found in dataset"
|
1216 |
+
f" '{data_args.dataset_name}'. Make sure to set `--train_text_column_name` to the"
|
1217 |
+
" correct text column - one of"
|
1218 |
+
f" {', '.join(raw_datasets_train_features)}."
|
1219 |
+
)
|
1220 |
+
|
1221 |
+
# 6. Load pretrained model, tokenizer, and feature extractor
|
1222 |
+
config = WhisperConfig.from_pretrained(
|
1223 |
+
(model_args.config_name if model_args.config_name else model_args.model_name_or_path),
|
1224 |
+
cache_dir=model_args.cache_dir,
|
1225 |
+
revision=model_args.model_revision,
|
1226 |
+
token=True if model_args.use_auth_token else None,
|
1227 |
+
)
|
1228 |
+
feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained(
|
1229 |
+
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
|
1230 |
+
cache_dir=model_args.cache_dir,
|
1231 |
+
revision=model_args.model_revision,
|
1232 |
+
token=True if model_args.use_auth_token else None,
|
1233 |
+
)
|
1234 |
+
tokenizer = WhisperTokenizerFast.from_pretrained(
|
1235 |
+
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
|
1236 |
+
cache_dir=model_args.cache_dir,
|
1237 |
+
use_fast=model_args.use_fast_tokenizer,
|
1238 |
+
revision=model_args.model_revision,
|
1239 |
+
token=True if model_args.use_auth_token else None,
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
# override timestamp tokens until tokenizer issues are fixed in transformers
|
1243 |
+
timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
|
1244 |
+
tokenizer.add_tokens(timestamps)
|
1245 |
+
|
1246 |
+
config.update(
|
1247 |
+
{
|
1248 |
+
"activation_dropout": model_args.activation_dropout,
|
1249 |
+
"attention_dropout": model_args.attention_dropout,
|
1250 |
+
"dropout": model_args.dropout,
|
1251 |
+
}
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
if training_args.precision == "full_mixed":
|
1255 |
+
# forward pass, backward pass and optimiser states in bf16
|
1256 |
+
dtype = jnp.bfloat16
|
1257 |
+
to_dtype = to_bf16
|
1258 |
+
elif training_args.precision == "half_mixed" or model_args.dtype == "bfloat16":
|
1259 |
+
# forward pass in bf16, backward pass and optimiser states in fp32
|
1260 |
+
dtype = jnp.bfloat16
|
1261 |
+
to_dtype = to_fp32
|
1262 |
+
else:
|
1263 |
+
if training_args.precision != "full":
|
1264 |
+
raise ValueError(
|
1265 |
+
f"`precision` should be one of: `full`, `half_mixed` or `full_mixed`, got {training_args.precision}"
|
1266 |
+
)
|
1267 |
+
# forward pass, backward pass and optimiser states in fp32
|
1268 |
+
dtype = jnp.float32
|
1269 |
+
to_dtype = to_fp32
|
1270 |
+
|
1271 |
+
student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained(
|
1272 |
+
model_args.model_name_or_path,
|
1273 |
+
config=config,
|
1274 |
+
dtype=dtype,
|
1275 |
+
cache_dir=model_args.cache_dir,
|
1276 |
+
revision=model_args.model_revision,
|
1277 |
+
subfolder=model_args.subfolder,
|
1278 |
+
token=True if model_args.use_auth_token else None,
|
1279 |
+
_do_init=False,
|
1280 |
+
use_scan=model_args.load_with_scan_weights,
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained(
|
1284 |
+
model_args.teacher_model_name_or_path,
|
1285 |
+
# config=config,
|
1286 |
+
dtype=dtype,
|
1287 |
+
cache_dir=model_args.cache_dir,
|
1288 |
+
# revision=model_args.model_revision,
|
1289 |
+
token=True if model_args.use_auth_token else None,
|
1290 |
+
_do_init=False,
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
|
1294 |
+
raise ValueError(
|
1295 |
+
f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
|
1296 |
+
f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
|
1297 |
+
f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
# enable scan / gradient checkpointing if necessary
|
1301 |
+
if training_args.use_scan:
|
1302 |
+
student_model.enable_scan() # to enable scan in the nn.Module
|
1303 |
+
student_params = student_model.convert_unroll_to_scan(student_params) # to convert the unrolled params to scan
|
1304 |
+
|
1305 |
+
teacher_model.enable_scan() # faster compile time (even though we don't train the teacher)
|
1306 |
+
teacher_params = teacher_model.convert_unroll_to_scan(teacher_params)
|
1307 |
+
|
1308 |
+
if training_args.gradient_checkpointing:
|
1309 |
+
student_model.enable_gradient_checkpointing() # to enable checkpointing in the nn.Module, there is no change to the params structure
|
1310 |
+
teacher_model.enable_gradient_checkpointing()
|
1311 |
+
|
1312 |
+
if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
|
1313 |
+
# We need to set the language and task ids for previously multilingual checkpoints - for now we hardcode this to Norwegian
|
1314 |
+
tokenizer.set_prefix_tokens(language="Norwegian", task="transcribe", predict_timestamps=False)
|
1315 |
+
student_model.generation_config.update(
|
1316 |
+
**{
|
1317 |
+
"language": "<|no|>",
|
1318 |
+
"task": "transcribe",
|
1319 |
+
}
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
# 7. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
|
1323 |
+
# so we just need to set the correct target sampling rate.
|
1324 |
+
raw_datasets = raw_datasets.cast_column(
|
1325 |
+
data_args.audio_column_name,
|
1326 |
+
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
# 8. Preprocessing the datasets.
|
1330 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
1331 |
+
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
|
1332 |
+
min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
|
1333 |
+
max_label_length = (
|
1334 |
+
data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
|
1335 |
+
)
|
1336 |
+
audio_column_name = data_args.audio_column_name
|
1337 |
+
num_workers = data_args.preprocessing_num_workers
|
1338 |
+
dataloader_num_workers = training_args.dataloader_num_workers
|
1339 |
+
dataloader_prefetch_size = data_args.prefetch_size
|
1340 |
+
train_text_column_name = data_args.train_text_column_name
|
1341 |
+
eval_text_column_name = "text"
|
1342 |
+
model_input_name = feature_extractor.model_input_names[0]
|
1343 |
+
#normalizer = BasicTextNormalizer(tokenizer.english_spelling_normalizer)
|
1344 |
+
normalizer = BasicTextNormalizer()
|
1345 |
+
wer_threshold = data_args.wer_threshold
|
1346 |
+
round_timestamps = data_args.round_timestamps
|
1347 |
+
|
1348 |
+
if training_args.do_train and data_args.max_train_samples is not None:
|
1349 |
+
raw_datasets["train"] = (
|
1350 |
+
raw_datasets["train"].take(data_args.max_train_samples)
|
1351 |
+
if data_args.streaming
|
1352 |
+
else raw_datasets["train"].select(range(data_args.max_train_samples))
|
1353 |
+
)
|
1354 |
+
|
1355 |
+
if training_args.do_eval and data_args.max_eval_samples is not None:
|
1356 |
+
for eval_split in all_eval_splits:
|
1357 |
+
raw_datasets[eval_split] = (
|
1358 |
+
raw_datasets[eval_split].take(data_args.max_eval_samples)
|
1359 |
+
if data_args.streaming
|
1360 |
+
else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
|
1361 |
+
)
|
1362 |
+
|
1363 |
+
# 10.3: filter training data based on WER threshold -> this is KEY to good distillation performance
|
1364 |
+
def is_wer_in_range(ground_truth, whisper_transcript):
|
1365 |
+
norm_ground_truth = normalizer(ground_truth)
|
1366 |
+
if whisper_transcript is not None and whisper_transcript.upper() == whisper_transcript:
|
1367 |
+
# filter entirely upper-case transcriptions: these are erroneous generations from large-v3
|
1368 |
+
return False
|
1369 |
+
elif len(norm_ground_truth) == 0 and len(normalizer(whisper_transcript)) == 0:
|
1370 |
+
return True
|
1371 |
+
elif len(norm_ground_truth.strip()) > 0 and whisper_transcript is not None and len(normalizer(whisper_transcript).strip()) > 0:
|
1372 |
+
norm_whisper_transcript = normalizer(whisper_transcript)
|
1373 |
+
wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth])
|
1374 |
+
return wer < wer_threshold
|
1375 |
+
else:
|
1376 |
+
# filter automatically since we cant know WER
|
1377 |
+
return False
|
1378 |
+
|
1379 |
+
|
1380 |
+
filter_by_wer_threshold = partial(
|
1381 |
+
raw_datasets["train"].filter,
|
1382 |
+
function=is_wer_in_range,
|
1383 |
+
input_columns=[eval_text_column_name, train_text_column_name],
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
if wer_threshold is not None:
|
1387 |
+
raw_datasets["train"] = (
|
1388 |
+
filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer")
|
1389 |
+
if not data_args.streaming
|
1390 |
+
else filter_by_wer_threshold()
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
def has_timestamp_tokens(input_str):
|
1394 |
+
"""
|
1395 |
+
Identify whether the input string contains timestamp tokens, of the form <|0.00|>, by searching for
|
1396 |
+
pairs of left and right-angle brackets.
|
1397 |
+
"""
|
1398 |
+
return bool(re.search("\<[^\>]*\>", input_str))
|
1399 |
+
|
1400 |
+
def round_timestamp_tokens(input_str: str, ndigits: int = 1):
|
1401 |
+
timestamps = re.findall("\<[^\>]*\>", input_str, re.DOTALL)
|
1402 |
+
for token in timestamps:
|
1403 |
+
# extract time digits from timestamp token, e.g. <|6.24|> to 6.24
|
1404 |
+
time_digit = token[2:-2]
|
1405 |
+
# round to specified number of digits, e.g. 6.24 to 6.2
|
1406 |
+
time_digit = round(float(time_digit), ndigits=ndigits)
|
1407 |
+
# replace in original string with the same precision, e.g. <|6.24|> to <|6.20|>
|
1408 |
+
input_str = input_str.replace(token, "<|{:.2f}|>".format(time_digit))
|
1409 |
+
return input_str
|
1410 |
+
|
1411 |
+
def prepare_train_dataset(batch):
|
1412 |
+
# process audio input
|
1413 |
+
sample = batch[audio_column_name]
|
1414 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
1415 |
+
batch[model_input_name] = inputs.get(model_input_name)[0]
|
1416 |
+
batch["input_length"] = len(sample["array"])
|
1417 |
+
|
1418 |
+
# process text targets
|
1419 |
+
input_str = batch[train_text_column_name]
|
1420 |
+
|
1421 |
+
# prompt & timestamp processing: for now, we only do one or the other
|
1422 |
+
if input_str.startswith("<|startoftranscript|>") or input_str.startswith("<|startofprev|>"):
|
1423 |
+
# prompted target text already has special ids added, so don't add them here
|
1424 |
+
batch["labels"] = tokenizer(input_str, add_special_tokens=False).input_ids
|
1425 |
+
return batch
|
1426 |
+
|
1427 |
+
has_timestamps = has_timestamp_tokens(input_str)
|
1428 |
+
|
1429 |
+
if has_timestamps:
|
1430 |
+
predict_timestamps = bool(np.random.binomial(1, data_args.timestamp_probability))
|
1431 |
+
if not predict_timestamps:
|
1432 |
+
# filter timestamp token ids if not part of the prediction task
|
1433 |
+
input_str = tokenizer._filter_timestamp_ids(input_str)
|
1434 |
+
elif round_timestamps:
|
1435 |
+
input_str = round_timestamp_tokens(input_str)
|
1436 |
+
else:
|
1437 |
+
predict_timestamps = False
|
1438 |
+
|
1439 |
+
tokenizer.set_prefix_tokens(language="Norwegian", task="transcribe", predict_timestamps=predict_timestamps)
|
1440 |
+
input_ids = tokenizer(input_str).input_ids
|
1441 |
+
batch["labels"] = input_ids
|
1442 |
+
return batch
|
1443 |
+
|
1444 |
+
def prepare_eval_dataset(batch):
|
1445 |
+
# process audio
|
1446 |
+
sample = batch[audio_column_name]
|
1447 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
1448 |
+
# process audio length
|
1449 |
+
batch[model_input_name] = inputs.get(model_input_name)[0]
|
1450 |
+
batch["input_length"] = len(sample["array"])
|
1451 |
+
|
1452 |
+
# process targets
|
1453 |
+
input_str = batch[eval_text_column_name]
|
1454 |
+
batch["labels"] = tokenizer(input_str).input_ids
|
1455 |
+
return batch
|
1456 |
+
|
1457 |
+
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
1458 |
+
if training_args.do_train:
|
1459 |
+
map_fn_train = partial(
|
1460 |
+
raw_datasets["train"].map, function=prepare_train_dataset, remove_columns=raw_datasets_train_features
|
1461 |
+
)
|
1462 |
+
vectorized_datasets["train"] = (
|
1463 |
+
map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
|
1464 |
+
if not data_args.streaming
|
1465 |
+
else map_fn_train()
|
1466 |
+
)
|
1467 |
+
if training_args.do_eval:
|
1468 |
+
for eval_split in all_eval_splits:
|
1469 |
+
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
|
1470 |
+
map_fn_eval = partial(
|
1471 |
+
raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
|
1472 |
+
)
|
1473 |
+
vectorized_datasets[eval_split] = (
|
1474 |
+
map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
|
1475 |
+
if not data_args.streaming
|
1476 |
+
else map_fn_eval()
|
1477 |
+
)
|
1478 |
+
|
1479 |
+
# filter training data with inputs longer than max_input_length
|
1480 |
+
def is_audio_in_length_range(length):
|
1481 |
+
return min_input_length < length < max_input_length
|
1482 |
+
|
1483 |
+
filter_by_audio_fn = partial(
|
1484 |
+
vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
|
1485 |
+
)
|
1486 |
+
vectorized_datasets = (
|
1487 |
+
filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
|
1488 |
+
if not data_args.streaming
|
1489 |
+
else filter_by_audio_fn()
|
1490 |
+
)
|
1491 |
+
|
1492 |
+
# filter training data with labels longer than max_label_length
|
1493 |
+
def is_labels_in_length_range(labels):
|
1494 |
+
return 0 < len(labels) < max_label_length
|
1495 |
+
|
1496 |
+
filter_by_labels_fn = partial(
|
1497 |
+
vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
|
1498 |
+
)
|
1499 |
+
vectorized_datasets = (
|
1500 |
+
filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
|
1501 |
+
if not data_args.streaming
|
1502 |
+
else filter_by_labels_fn()
|
1503 |
+
)
|
1504 |
+
|
1505 |
+
# for large datasets it is advised to run the preprocessing on a
|
1506 |
+
# single machine first with `args.preprocessing_only` since there will mostly likely
|
1507 |
+
# be a timeout when running the script in distributed mode.
|
1508 |
+
# In a second step `args.preprocessing_only` can then be set to `False` to load the
|
1509 |
+
# cached dataset
|
1510 |
+
if data_args.preprocessing_only:
|
1511 |
+
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
|
1512 |
+
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
|
1513 |
+
return
|
1514 |
+
|
1515 |
+
# 8. Load Metric
|
1516 |
+
metric = evaluate.load("wer")
|
1517 |
+
# convention is that we space all punctuation *except* apostrophes
|
1518 |
+
all_punctuation = list(string.punctuation.replace("'", ""))
|
1519 |
+
return_timestamps = data_args.return_timestamps if data_args.timestamp_probability > 0 else False
|
1520 |
+
|
1521 |
+
def compute_metrics(preds, labels):
|
1522 |
+
# replace padded labels by the padding token
|
1523 |
+
for idx in range(len(labels)):
|
1524 |
+
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
|
1525 |
+
|
1526 |
+
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
|
1527 |
+
# we do not want to group tokens when computing the metrics
|
1528 |
+
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
1529 |
+
|
1530 |
+
# space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352)
|
1531 |
+
spaced_pred_str = [
|
1532 |
+
pred_str[i].replace(punctuation, f" {punctuation} ")
|
1533 |
+
for punctuation in all_punctuation
|
1534 |
+
for i in range(len(pred_str))
|
1535 |
+
]
|
1536 |
+
spaced_label_str = [
|
1537 |
+
label_str[i].replace(punctuation, f" {punctuation} ")
|
1538 |
+
for punctuation in all_punctuation
|
1539 |
+
for i in range(len(label_str))
|
1540 |
+
]
|
1541 |
+
wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str)
|
1542 |
+
|
1543 |
+
norm_pred_str, norm_label_str = [], []
|
1544 |
+
|
1545 |
+
# Iterate through all predictions and labels
|
1546 |
+
for pred, label in zip(pred_str, label_str):
|
1547 |
+
# Normalize the prediction and label
|
1548 |
+
normalized_pred = normalizer(pred)
|
1549 |
+
normalized_label = normalizer(label)
|
1550 |
+
|
1551 |
+
# If either normalized string is empty after normalization, replace with "<|nospeech|>"
|
1552 |
+
if not normalized_pred.strip():
|
1553 |
+
normalized_pred = "<|nospeech|>"
|
1554 |
+
if not normalized_label.strip():
|
1555 |
+
normalized_label = "<|nospeech|>"
|
1556 |
+
|
1557 |
+
norm_pred_str.append(normalized_pred)
|
1558 |
+
norm_label_str.append(normalized_label)
|
1559 |
+
|
1560 |
+
# Replace original strings with "<|nocaptions|>" where necessary for consistency
|
1561 |
+
pred_str = [pred if len(pred.strip()) > 0 else "<|nospeech|>" for pred in pred_str]
|
1562 |
+
label_str = [label if len(label.strip()) > 0 else "<|nospeech|>" for label in label_str]
|
1563 |
+
|
1564 |
+
# Compute WER using all entries, including those with "<|nocaptions|>"
|
1565 |
+
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
|
1566 |
+
return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str
|
1567 |
+
|
1568 |
+
|
1569 |
+
# 9. Save feature extractor, tokenizer, config and generation config
|
1570 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
1571 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
1572 |
+
config.save_pretrained(training_args.output_dir)
|
1573 |
+
student_model.generation_config.save_pretrained(
|
1574 |
+
training_args.output_dir
|
1575 |
+
) # generation config stays bound to model to make it easy to jit
|
1576 |
+
|
1577 |
+
processor = WhisperProcessor.from_pretrained(training_args.output_dir)
|
1578 |
+
|
1579 |
+
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
|
1580 |
+
processor=processor,
|
1581 |
+
decoder_start_token_id=student_model.config.decoder_start_token_id, # <|startoftranscript|>
|
1582 |
+
decoder_prev_token_id=tokenizer.all_special_ids[-3], # <|startofprev|>
|
1583 |
+
input_padding="longest",
|
1584 |
+
target_padding="max_length",
|
1585 |
+
max_target_length=max_label_length,
|
1586 |
+
)
|
1587 |
+
|
1588 |
+
# Initialize our training
|
1589 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
1590 |
+
rng, dropout_rng = jax.random.split(rng)
|
1591 |
+
|
1592 |
+
# Store some constants
|
1593 |
+
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
1594 |
+
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
|
1595 |
+
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
1596 |
+
eval_batch_size = per_device_eval_batch_size * jax.device_count()
|
1597 |
+
|
1598 |
+
if not data_args.streaming and training_args.max_steps < 0:
|
1599 |
+
num_epochs = int(training_args.num_train_epochs)
|
1600 |
+
steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size
|
1601 |
+
total_train_steps = steps_per_epoch * num_epochs
|
1602 |
+
elif training_args.max_steps > 0:
|
1603 |
+
logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
1604 |
+
total_train_steps = int(training_args.max_steps)
|
1605 |
+
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
|
1606 |
+
num_epochs = sys.maxsize
|
1607 |
+
steps_per_epoch = total_train_steps
|
1608 |
+
else:
|
1609 |
+
raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")
|
1610 |
+
|
1611 |
+
if training_args.eval_steps is None:
|
1612 |
+
logger.info(
|
1613 |
+
f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
|
1614 |
+
)
|
1615 |
+
eval_steps = steps_per_epoch
|
1616 |
+
else:
|
1617 |
+
eval_steps = training_args.eval_steps
|
1618 |
+
|
1619 |
+
# Create learning rate schedule
|
1620 |
+
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
1621 |
+
total_train_steps * gradient_accumulation_steps,
|
1622 |
+
training_args.lr_scheduler_type,
|
1623 |
+
training_args.warmup_steps * gradient_accumulation_steps,
|
1624 |
+
training_args.learning_rate,
|
1625 |
+
)
|
1626 |
+
|
1627 |
+
# We use Optax's "masking" functionality to not apply weight decay
|
1628 |
+
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
1629 |
+
# mask boolean with the same structure as the parameters.
|
1630 |
+
# The mask is True for parameters that should be decayed.
|
1631 |
+
def decay_mask_fn(params):
|
1632 |
+
flat_params = traverse_util.flatten_dict(params)
|
1633 |
+
# find out all LayerNorm parameters
|
1634 |
+
layer_norm_candidates = [
|
1635 |
+
"layer_norm",
|
1636 |
+
"self_attn_layer_norm",
|
1637 |
+
"final_layer_norm",
|
1638 |
+
"encoder_attn_layer_norm",
|
1639 |
+
]
|
1640 |
+
layer_norm_named_params = {
|
1641 |
+
layer[-2:]
|
1642 |
+
for layer_norm_name in layer_norm_candidates
|
1643 |
+
for layer in flat_params.keys()
|
1644 |
+
if layer_norm_name in "".join(layer).lower()
|
1645 |
+
}
|
1646 |
+
flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params}
|
1647 |
+
return traverse_util.unflatten_dict(flat_mask)
|
1648 |
+
|
1649 |
+
# create adam optimizer
|
1650 |
+
adamw = optax.adamw(
|
1651 |
+
learning_rate=linear_decay_lr_schedule_fn,
|
1652 |
+
b1=training_args.adam_beta1,
|
1653 |
+
b2=training_args.adam_beta2,
|
1654 |
+
eps=training_args.adam_epsilon,
|
1655 |
+
weight_decay=training_args.weight_decay,
|
1656 |
+
mask=decay_mask_fn,
|
1657 |
+
)
|
1658 |
+
|
1659 |
+
if gradient_accumulation_steps > 1:
|
1660 |
+
# accumulate gradients and apply once every k steps
|
1661 |
+
adamw = optax.MultiSteps(adamw, every_k_schedule=gradient_accumulation_steps)
|
1662 |
+
|
1663 |
+
share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model
|
1664 |
+
encoder_layer_mapping = get_layers_to_supervise(
|
1665 |
+
student_model.config.encoder_layers, teacher_model.config.encoder_layers
|
1666 |
+
)
|
1667 |
+
decoder_layer_mapping = get_layers_to_supervise(
|
1668 |
+
student_model.config.decoder_layers, teacher_model.config.decoder_layers
|
1669 |
+
)
|
1670 |
+
|
1671 |
+
# Setup train state
|
1672 |
+
student_state = TrainState.create(
|
1673 |
+
apply_fn=student_model.decode if share_hidden_states else student_model.__call__,
|
1674 |
+
params=student_params,
|
1675 |
+
tx=adamw,
|
1676 |
+
to_dtype=to_dtype,
|
1677 |
+
dropout_rng=dropout_rng,
|
1678 |
+
max_grad_norm=training_args.max_grad_norm,
|
1679 |
+
)
|
1680 |
+
|
1681 |
+
if training_args.resume_from_checkpoint is not None:
|
1682 |
+
if os.path.isfile(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")):
|
1683 |
+
logger.info(
|
1684 |
+
f"Checkpoint detected, resuming training at {training_args.resume_from_checkpoint}. To avoid "
|
1685 |
+
"this behavior, omit the resume_from_checkpoint argument."
|
1686 |
+
)
|
1687 |
+
with Path(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")).open("rb") as f:
|
1688 |
+
student_state = from_bytes(student_state, f.read())
|
1689 |
+
else:
|
1690 |
+
logger.warning(
|
1691 |
+
f"Checkpoint {training_args.resume_from_checkpoint} not detected, training from scratch. Ensure "
|
1692 |
+
f"you pass the path to a folder with a valid checkpoint for your model."
|
1693 |
+
)
|
1694 |
+
|
1695 |
+
def cross_entropy_loss(logits, labels):
|
1696 |
+
vocab_size = logits.shape[-1]
|
1697 |
+
# optax onehot always returns a float32 device array, need to downcast if performing mixed precision training
|
1698 |
+
onehot_targets = to_dtype(onehot(labels, vocab_size))
|
1699 |
+
loss = optax.softmax_cross_entropy(logits, onehot_targets)
|
1700 |
+
# ignore padded tokens from loss, i.e. where labels are not set to -100
|
1701 |
+
padding = labels >= 0
|
1702 |
+
loss = loss * padding
|
1703 |
+
loss = loss.sum()
|
1704 |
+
num_labels = padding.sum()
|
1705 |
+
return loss, num_labels
|
1706 |
+
|
1707 |
+
# temperature smoothed kl-divergence
|
1708 |
+
def kl_divergence(target_distribution, log_predicted_distribution, labels, eps=1e-20):
|
1709 |
+
divergence = -target_distribution * (log_predicted_distribution - jnp.log(target_distribution + eps))
|
1710 |
+
# ignore padded tokens from divergence, i.e. where labels are not set to -100
|
1711 |
+
padding_mask = labels >= 0
|
1712 |
+
padding_mask = jnp.expand_dims(padding_mask, axis=-1)
|
1713 |
+
divergence = (divergence * padding_mask).sum()
|
1714 |
+
return to_dtype(divergence) # respect the dtype of the backprop
|
1715 |
+
|
1716 |
+
def mean_square_error_loss(student_outputs, teacher_outputs):
|
1717 |
+
mse = dtype(0.0)
|
1718 |
+
|
1719 |
+
# tie encoder embeddings
|
1720 |
+
mse += jnp.mean(
|
1721 |
+
jnp.square(teacher_outputs.encoder_hidden_states[0] - student_outputs.encoder_hidden_states[0])
|
1722 |
+
)
|
1723 |
+
|
1724 |
+
for student_layer_id, teacher_layer_id in encoder_layer_mapping.items():
|
1725 |
+
# offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state
|
1726 |
+
student_hidden_state = student_outputs.encoder_hidden_states[student_layer_id + 1]
|
1727 |
+
teacher_hidden_state = teacher_outputs.encoder_hidden_states[teacher_layer_id + 1]
|
1728 |
+
mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state))
|
1729 |
+
|
1730 |
+
# student_attention = student_outputs.encoder_attentions[student_layer_id]
|
1731 |
+
# teacher_attention = teacher_outputs.encoder_attentions[teacher_layer_id]
|
1732 |
+
# mse += jnp.mean(jnp.square(student_attention - teacher_attention))
|
1733 |
+
|
1734 |
+
# tie decoder embeddings
|
1735 |
+
mse += jnp.mean(
|
1736 |
+
jnp.square(teacher_outputs.decoder_hidden_states[0] - student_outputs.decoder_hidden_states[0])
|
1737 |
+
)
|
1738 |
+
|
1739 |
+
for student_layer_id, teacher_layer_id in decoder_layer_mapping.items():
|
1740 |
+
# offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state
|
1741 |
+
student_hidden_state = student_outputs.decoder_hidden_states[student_layer_id + 1]
|
1742 |
+
teacher_hidden_state = teacher_outputs.decoder_hidden_states[teacher_layer_id + 1]
|
1743 |
+
mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state))
|
1744 |
+
|
1745 |
+
# student_attention = student_outputs.decoder_attentions[student_layer_id]
|
1746 |
+
# teacher_attention = teacher_outputs.decoder_attentions[teacher_layer_id]
|
1747 |
+
# mse += jnp.mean(jnp.square(student_attention - teacher_attention))
|
1748 |
+
|
1749 |
+
# student_cross_attention = student_outputs.cross_attentions[student_layer_id]
|
1750 |
+
# teacher_cross_attention = teacher_outputs.cross_attentions[teacher_layer_id]
|
1751 |
+
# mse += jnp.mean(jnp.square(student_cross_attention - teacher_cross_attention))
|
1752 |
+
|
1753 |
+
return to_dtype(mse) # respect the dtype of the backprop
|
1754 |
+
|
1755 |
+
# Define gradient update step fn
|
1756 |
+
def train_step(
|
1757 |
+
student_state,
|
1758 |
+
teacher_params,
|
1759 |
+
batch,
|
1760 |
+
freeze_encoder,
|
1761 |
+
share_hidden_states,
|
1762 |
+
temperature=2.0,
|
1763 |
+
):
|
1764 |
+
dropout_rng, new_dropout_rng = jax.random.split(student_state.dropout_rng)
|
1765 |
+
|
1766 |
+
def compute_loss(student_params):
|
1767 |
+
labels = batch.pop("labels")
|
1768 |
+
output_hidden_states = not share_hidden_states and training_args.mse_weight > 0.0
|
1769 |
+
|
1770 |
+
teacher_outputs = teacher_model(
|
1771 |
+
**batch,
|
1772 |
+
params=teacher_params,
|
1773 |
+
freeze_encoder=True,
|
1774 |
+
output_hidden_states=output_hidden_states,
|
1775 |
+
train=False,
|
1776 |
+
)
|
1777 |
+
|
1778 |
+
if share_hidden_states:
|
1779 |
+
# if the student and teacher share the same frozen encoder then we don't have to recompute the
|
1780 |
+
# encoder hidden-states for the student model, we can just re-use from the teacher
|
1781 |
+
encoder_hidden_states = jax.lax.stop_gradient(teacher_outputs.encoder_last_hidden_state)
|
1782 |
+
encoder_outputs = FlaxBaseModelOutput(last_hidden_state=encoder_hidden_states)
|
1783 |
+
|
1784 |
+
student_outputs = student_state.apply_fn(
|
1785 |
+
decoder_input_ids=batch["decoder_input_ids"],
|
1786 |
+
encoder_outputs=encoder_outputs,
|
1787 |
+
params=student_params,
|
1788 |
+
dropout_rng=dropout_rng,
|
1789 |
+
train=True,
|
1790 |
+
)
|
1791 |
+
else:
|
1792 |
+
# do the full forward pass for the student model (encoder + decoder)
|
1793 |
+
student_outputs = student_state.apply_fn(
|
1794 |
+
**batch,
|
1795 |
+
params=student_params,
|
1796 |
+
dropout_rng=dropout_rng,
|
1797 |
+
freeze_encoder=freeze_encoder,
|
1798 |
+
output_hidden_states=output_hidden_states,
|
1799 |
+
train=True,
|
1800 |
+
)
|
1801 |
+
|
1802 |
+
# CE (data) loss
|
1803 |
+
ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels)
|
1804 |
+
|
1805 |
+
# rescale by temperature to ensure gradients scale correctly
|
1806 |
+
teacher_distribution = jax.nn.softmax(teacher_outputs.logits / temperature, axis=-1)
|
1807 |
+
# ensure no information flow backwards through teacher
|
1808 |
+
teacher_distribution = jax.lax.stop_gradient(teacher_distribution)
|
1809 |
+
# log softmax of student predictions for numerical stability
|
1810 |
+
student_distribution = jax.nn.log_softmax(student_outputs.logits / temperature, axis=-1)
|
1811 |
+
# KL-divergence loss (scaled by temperature)
|
1812 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, labels) * temperature**2
|
1813 |
+
|
1814 |
+
# MSE loss between enc-dec hidden-states and attentions
|
1815 |
+
mse_loss = (
|
1816 |
+
mean_square_error_loss(student_outputs, teacher_outputs)
|
1817 |
+
if output_hidden_states
|
1818 |
+
else jnp.zeros_like(kl_loss)
|
1819 |
+
)
|
1820 |
+
|
1821 |
+
# use DistilBart formulation - only tune the MSE weight and take remaining HPs from DistilBERT
|
1822 |
+
ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0
|
1823 |
+
loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss
|
1824 |
+
|
1825 |
+
return loss, (
|
1826 |
+
ce_loss,
|
1827 |
+
kl_loss,
|
1828 |
+
mse_loss,
|
1829 |
+
num_labels,
|
1830 |
+
)
|
1831 |
+
|
1832 |
+
grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
|
1833 |
+
(loss, (ce_loss, kl_loss, mse_loss, num_labels)), grad = grad_fn(to_dtype(student_state.params))
|
1834 |
+
|
1835 |
+
# true loss = total loss / total samples
|
1836 |
+
loss = jax.lax.psum(loss, "batch")
|
1837 |
+
num_labels = jax.lax.psum(num_labels, "batch")
|
1838 |
+
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
|
1839 |
+
|
1840 |
+
# true grad = total grad / total samples
|
1841 |
+
grad = jax.lax.psum(grad, "batch")
|
1842 |
+
grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
|
1843 |
+
new_state = student_state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng, to_dtype=to_dtype)
|
1844 |
+
|
1845 |
+
# CE/KL/MSE losses for logging
|
1846 |
+
ce_loss = jax.lax.psum(ce_loss, "batch")
|
1847 |
+
ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss)
|
1848 |
+
|
1849 |
+
kl_loss = jax.lax.psum(kl_loss, "batch")
|
1850 |
+
kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss)
|
1851 |
+
|
1852 |
+
mse_loss = jax.lax.psum(mse_loss, "batch")
|
1853 |
+
mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss)
|
1854 |
+
|
1855 |
+
metrics = {
|
1856 |
+
"loss": loss,
|
1857 |
+
"learning_rate": linear_decay_lr_schedule_fn(student_state.step),
|
1858 |
+
"ce_loss": ce_loss,
|
1859 |
+
"kl_loss": kl_loss,
|
1860 |
+
"mse_loss": mse_loss,
|
1861 |
+
}
|
1862 |
+
return new_state, metrics
|
1863 |
+
|
1864 |
+
# Define eval fn
|
1865 |
+
def eval_step(student_params, teacher_params, batch):
|
1866 |
+
labels = batch.pop("labels")
|
1867 |
+
output_hidden_states = not share_hidden_states and training_args.mse_weight > 0
|
1868 |
+
|
1869 |
+
student_outputs = student_model(
|
1870 |
+
**batch,
|
1871 |
+
params=student_params,
|
1872 |
+
output_hidden_states=output_hidden_states,
|
1873 |
+
train=False,
|
1874 |
+
)
|
1875 |
+
student_distribution = jax.nn.log_softmax(student_outputs.logits, axis=-1)
|
1876 |
+
ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels)
|
1877 |
+
|
1878 |
+
teacher_outputs = teacher_model(
|
1879 |
+
**batch,
|
1880 |
+
params=teacher_params,
|
1881 |
+
output_hidden_states=output_hidden_states,
|
1882 |
+
train=False,
|
1883 |
+
)
|
1884 |
+
teacher_distribution = jax.nn.softmax(teacher_outputs.logits, axis=-1)
|
1885 |
+
# temperature is always 1 for eval
|
1886 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, labels)
|
1887 |
+
|
1888 |
+
mse_loss = (
|
1889 |
+
mean_square_error_loss(student_outputs, teacher_outputs)
|
1890 |
+
if output_hidden_states
|
1891 |
+
else jnp.zeros_like(kl_loss)
|
1892 |
+
)
|
1893 |
+
|
1894 |
+
ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0
|
1895 |
+
loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss
|
1896 |
+
# true loss = total loss / total samples
|
1897 |
+
loss = jax.lax.psum(loss, "batch")
|
1898 |
+
num_labels = jax.lax.psum(num_labels, "batch")
|
1899 |
+
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
|
1900 |
+
|
1901 |
+
# CE/KL/MSE losses for logging
|
1902 |
+
ce_loss = jax.lax.psum(ce_loss, "batch")
|
1903 |
+
ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss)
|
1904 |
+
|
1905 |
+
kl_loss = jax.lax.psum(kl_loss, "batch")
|
1906 |
+
kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss)
|
1907 |
+
|
1908 |
+
mse_loss = jax.lax.psum(mse_loss, "batch")
|
1909 |
+
mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss)
|
1910 |
+
|
1911 |
+
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss, "mse_loss": mse_loss}
|
1912 |
+
return metrics
|
1913 |
+
|
1914 |
+
# Define generation function
|
1915 |
+
num_beams = (
|
1916 |
+
training_args.generation_num_beams
|
1917 |
+
if training_args.generation_num_beams is not None
|
1918 |
+
else student_model.config.num_beams
|
1919 |
+
)
|
1920 |
+
|
1921 |
+
# forcing the language and task tokens helps the model in its generations
|
1922 |
+
gen_kwargs = {
|
1923 |
+
"max_length": max_label_length,
|
1924 |
+
"num_beams": num_beams,
|
1925 |
+
"language": "<|en|>",
|
1926 |
+
"task": "transcribe",
|
1927 |
+
"return_timestamps": return_timestamps,
|
1928 |
+
}
|
1929 |
+
|
1930 |
+
def generate_step(student_params, batch):
|
1931 |
+
output_ids = student_model.generate(
|
1932 |
+
batch[model_input_name],
|
1933 |
+
attention_mask=batch.get("attention_mask"),
|
1934 |
+
params=student_params,
|
1935 |
+
**gen_kwargs,
|
1936 |
+
)
|
1937 |
+
return output_ids.sequences
|
1938 |
+
|
1939 |
+
# Replicate the train state on each device
|
1940 |
+
student_state = student_state.replicate()
|
1941 |
+
|
1942 |
+
# Replicate the teacher params on each device
|
1943 |
+
teacher_params = jax_utils.replicate(teacher_params)
|
1944 |
+
|
1945 |
+
# Create parallel version of the train and eval step
|
1946 |
+
p_train_step = jax.pmap(
|
1947 |
+
train_step,
|
1948 |
+
"batch",
|
1949 |
+
in_axes=(0, 0, 0, None, None, None),
|
1950 |
+
donate_argnums=(0,),
|
1951 |
+
static_broadcasted_argnums=(
|
1952 |
+
3,
|
1953 |
+
4,
|
1954 |
+
),
|
1955 |
+
)
|
1956 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
1957 |
+
p_generate_step = jax.pmap(generate_step, "batch")
|
1958 |
+
|
1959 |
+
logger.info("***** Running training *****")
|
1960 |
+
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
|
1961 |
+
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
|
1962 |
+
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
|
1963 |
+
logger.info(
|
1964 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
|
1965 |
+
)
|
1966 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
1967 |
+
|
1968 |
+
# ======================== Training ================================
|
1969 |
+
train_time = 0
|
1970 |
+
train_start = time.time()
|
1971 |
+
train_metrics = []
|
1972 |
+
batches_to_skip = jax.device_get(unreplicate(student_state.step))
|
1973 |
+
cur_step = int(batches_to_skip) # will be zero if starting from scratch
|
1974 |
+
epochs_trained = batches_to_skip // steps_per_epoch
|
1975 |
+
steps_trained_progress_bar = tqdm(range(total_train_steps), desc="Train steps ... ", position=0)
|
1976 |
+
steps_trained_progress_bar.update(batches_to_skip)
|
1977 |
+
continue_training = True
|
1978 |
+
minibatch_steps = 0
|
1979 |
+
|
1980 |
+
if batches_to_skip > 0:
|
1981 |
+
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
1982 |
+
logger.info(f" Continuing training from epoch {epochs_trained}")
|
1983 |
+
logger.info(f" Continuing training from global step {batches_to_skip}")
|
1984 |
+
|
1985 |
+
# Generate a training data loader by shuffling sampling indices from the train dataset
|
1986 |
+
train_loader = get_data_loader(
|
1987 |
+
training_args.seed,
|
1988 |
+
vectorized_datasets["train"],
|
1989 |
+
batch_size=train_batch_size,
|
1990 |
+
data_collator=data_collator,
|
1991 |
+
dataloader_num_workers=dataloader_num_workers,
|
1992 |
+
skip_batches=batches_to_skip,
|
1993 |
+
prefetch_size=dataloader_prefetch_size,
|
1994 |
+
)
|
1995 |
+
|
1996 |
+
for epoch in range(epochs_trained, num_epochs):
|
1997 |
+
if hasattr(train_loader, "dataset") and isinstance(train_loader.dataset, IterableDataset):
|
1998 |
+
train_loader.dataset.set_epoch(epoch)
|
1999 |
+
|
2000 |
+
for batch in train_loader:
|
2001 |
+
minibatch_steps += 1
|
2002 |
+
update_step = minibatch_steps == gradient_accumulation_steps
|
2003 |
+
|
2004 |
+
if update_step:
|
2005 |
+
steps_trained_progress_bar.update(1)
|
2006 |
+
cur_step += 1
|
2007 |
+
minibatch_steps = 0
|
2008 |
+
|
2009 |
+
batch = shard(batch.data)
|
2010 |
+
student_state, train_metric = p_train_step(
|
2011 |
+
student_state,
|
2012 |
+
teacher_params,
|
2013 |
+
batch,
|
2014 |
+
training_args.freeze_encoder,
|
2015 |
+
share_hidden_states,
|
2016 |
+
training_args.temperature,
|
2017 |
+
)
|
2018 |
+
|
2019 |
+
if cur_step % training_args.logging_steps == 0 and update_step:
|
2020 |
+
train_metrics.append(train_metric)
|
2021 |
+
train_metric_to_write = unreplicate(train_metric)
|
2022 |
+
steps_trained_progress_bar.write(
|
2023 |
+
f"Step... ({cur_step} / {total_train_steps} | Loss:"
|
2024 |
+
f" {train_metric_to_write['loss']}, Learning Rate:"
|
2025 |
+
f" {train_metric_to_write['learning_rate']})"
|
2026 |
+
)
|
2027 |
+
if has_wandb and jax.process_index() == 0:
|
2028 |
+
write_wandb_metric(
|
2029 |
+
wandb_logger,
|
2030 |
+
train_metric_to_write,
|
2031 |
+
train_time + time.time() - train_start,
|
2032 |
+
cur_step,
|
2033 |
+
epoch,
|
2034 |
+
prefix="train",
|
2035 |
+
)
|
2036 |
+
|
2037 |
+
# save checkpoint and weights after each save_steps and at the end of training
|
2038 |
+
if (cur_step % training_args.save_steps == 0 and update_step) or cur_step == total_train_steps:
|
2039 |
+
if jax.process_index() == 0:
|
2040 |
+
save_hf_weights(
|
2041 |
+
student_state,
|
2042 |
+
student_model,
|
2043 |
+
processor,
|
2044 |
+
training_args.output_dir,
|
2045 |
+
cur_step,
|
2046 |
+
total_train_steps,
|
2047 |
+
use_scan=training_args.use_scan,
|
2048 |
+
)
|
2049 |
+
if training_args.save_train_state:
|
2050 |
+
student_state.save_state(
|
2051 |
+
training_args.output_dir, save_total_limit=training_args.save_total_limit
|
2052 |
+
)
|
2053 |
+
if training_args.push_to_hub:
|
2054 |
+
repo.push_to_hub(
|
2055 |
+
commit_message=f"Saving train state of step {cur_step}",
|
2056 |
+
blocking=False,
|
2057 |
+
)
|
2058 |
+
|
2059 |
+
if training_args.do_eval and (
|
2060 |
+
(cur_step % eval_steps == 0 and update_step) or cur_step == total_train_steps
|
2061 |
+
):
|
2062 |
+
train_time += time.time() - train_start
|
2063 |
+
# ======================== Evaluating ==============================
|
2064 |
+
for eval_split in all_eval_splits:
|
2065 |
+
eval_metrics = []
|
2066 |
+
eval_preds = []
|
2067 |
+
eval_labels = []
|
2068 |
+
eval_start = time.time()
|
2069 |
+
|
2070 |
+
eval_loader = get_data_loader(
|
2071 |
+
training_args.seed,
|
2072 |
+
vectorized_datasets[eval_split],
|
2073 |
+
batch_size=eval_batch_size,
|
2074 |
+
data_collator=data_collator,
|
2075 |
+
shuffle=False,
|
2076 |
+
drop_last=False,
|
2077 |
+
dataloader_num_workers=dataloader_num_workers,
|
2078 |
+
)
|
2079 |
+
for batch in tqdm(eval_loader, desc=f"Evaluating {eval_split}...", position=2):
|
2080 |
+
# Model forward
|
2081 |
+
labels = batch["labels"]
|
2082 |
+
|
2083 |
+
metrics = pad_shard_unpad(
|
2084 |
+
p_eval_step,
|
2085 |
+
static_argnums=(
|
2086 |
+
0,
|
2087 |
+
1,
|
2088 |
+
),
|
2089 |
+
static_return=True,
|
2090 |
+
)(
|
2091 |
+
student_state.params,
|
2092 |
+
teacher_params,
|
2093 |
+
batch.data,
|
2094 |
+
min_device_batch=per_device_eval_batch_size,
|
2095 |
+
)
|
2096 |
+
eval_metrics.append(metrics)
|
2097 |
+
|
2098 |
+
# generation
|
2099 |
+
if training_args.predict_with_generate:
|
2100 |
+
generated_ids = pad_shard_unpad(p_generate_step)(
|
2101 |
+
student_state.params, batch.data, min_device_batch=per_device_eval_batch_size
|
2102 |
+
)
|
2103 |
+
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
|
2104 |
+
eval_labels.extend(labels)
|
2105 |
+
|
2106 |
+
eval_time = time.time() - eval_start
|
2107 |
+
|
2108 |
+
# normalize eval metrics
|
2109 |
+
eval_metrics = get_metrics(eval_metrics)
|
2110 |
+
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
|
2111 |
+
|
2112 |
+
# compute WER metric
|
2113 |
+
wer_desc = ""
|
2114 |
+
if training_args.predict_with_generate:
|
2115 |
+
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
|
2116 |
+
eval_preds, eval_labels
|
2117 |
+
)
|
2118 |
+
eval_metrics.update(wer_metric)
|
2119 |
+
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
|
2120 |
+
|
2121 |
+
# Print metrics and update progress bar
|
2122 |
+
steps_trained_progress_bar.write(
|
2123 |
+
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
|
2124 |
+
f" {wer_desc})"
|
2125 |
+
)
|
2126 |
+
|
2127 |
+
if has_tensorboard and jax.process_index() == 0:
|
2128 |
+
write_eval_metric(
|
2129 |
+
summary_writer,
|
2130 |
+
eval_metrics,
|
2131 |
+
cur_step,
|
2132 |
+
prefix=eval_split,
|
2133 |
+
)
|
2134 |
+
|
2135 |
+
if has_wandb and jax.process_index() == 0:
|
2136 |
+
write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, epoch, prefix=eval_split)
|
2137 |
+
if training_args.predict_with_generate:
|
2138 |
+
write_wandb_pred(
|
2139 |
+
wandb_logger,
|
2140 |
+
pred_str,
|
2141 |
+
label_str,
|
2142 |
+
norm_pred_str,
|
2143 |
+
norm_label_str,
|
2144 |
+
cur_step,
|
2145 |
+
prefix=eval_split,
|
2146 |
+
)
|
2147 |
+
|
2148 |
+
if has_tensorboard and jax.process_index() == 0:
|
2149 |
+
# we'll only log to tensorboard every eval steps
|
2150 |
+
write_train_metric(
|
2151 |
+
summary_writer,
|
2152 |
+
train_metrics,
|
2153 |
+
train_time,
|
2154 |
+
cur_step,
|
2155 |
+
training_args.logging_steps,
|
2156 |
+
)
|
2157 |
+
|
2158 |
+
# flush the train metrics
|
2159 |
+
train_start = time.time()
|
2160 |
+
train_metrics = []
|
2161 |
+
|
2162 |
+
# break condition
|
2163 |
+
if cur_step == total_train_steps:
|
2164 |
+
continue_training = False
|
2165 |
+
break
|
2166 |
+
|
2167 |
+
if not continue_training:
|
2168 |
+
break
|
2169 |
+
|
2170 |
+
|
2171 |
+
if __name__ == "__main__":
|
2172 |
+
main()
|
run_experiment2.sh
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
TOKENIZERS_PARALLELISM=false python3 run_distillation.py \
|
3 |
+
--model_name_or_path "./nb-distil-large-init" \
|
4 |
+
--teacher_model_name_or_path "NbAiLab/nb-whisper-large" \
|
5 |
+
--train_dataset_name "NbAiLab/annotated_ncc_speech_styling_v2_vad3_distil_postLv2" \
|
6 |
+
--train_dataset_config_name "" \
|
7 |
+
--train_split_name "train" \
|
8 |
+
--eval_dataset_name "NbAiLab/ncc_speech_v7" \
|
9 |
+
--eval_dataset_config_name "" \
|
10 |
+
--eval_split_name "validation_norwegian_fleurs" \
|
11 |
+
--eval_steps 500 \
|
12 |
+
--save_steps 5000 \
|
13 |
+
--warmup_steps 1000 \
|
14 |
+
--learning_rate 0.0003 \
|
15 |
+
--lr_scheduler_type "constant_with_warmup" \
|
16 |
+
--logging_steps 500 \
|
17 |
+
--save_total_limit 1 \
|
18 |
+
--max_steps 200000 \
|
19 |
+
--wer_threshold 10 \
|
20 |
+
--per_device_train_batch_size 4\
|
21 |
+
--per_device_eval_batch_size 4 \
|
22 |
+
--dataloader_num_workers 8 \
|
23 |
+
--dtype "bfloat16" \
|
24 |
+
--output_dir "./nb-distil-whisper-larg7-flax6" \
|
25 |
+
--do_train \
|
26 |
+
--do_eval \
|
27 |
+
--use_scan \
|
28 |
+
--gradient_checkpointing \
|
29 |
+
--overwrite_output_dir \
|
30 |
+
--predict_with_generate \
|
31 |
+
--freeze_encoder \
|
32 |
+
--streaming \
|
33 |
+
--use_auth_token \
|
34 |
+
--report_to "wandb" \
|
35 |
+
--wandb_project "nb-distil-whisper-large-fleurseval" \
|
36 |
+
--wandb_name "flax_experiment1_bs4_v5_1e4_wer10" \
|
37 |
+
--save_code_to_wandb \
|
38 |
+
--save_train_state \
|
39 |
+
--hub_model_id "NbAiLab/nb-distil-whisper-large-flax6"7\
|
40 |
+
--push_to_hub
|
41 |
+
|