pere commited on
Commit
aae0a3f
·
1 Parent(s): 1425359
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ wandb/
.run_experiment2.sh.un~ ADDED
Binary file (2.95 kB). View file
 
create_student_model.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Initialise a student Whisper model from a pre-trained teacher model for
18
+ teacher-student distillation.
19
+ """
20
+
21
+ import argparse
22
+ import copy
23
+ import logging
24
+
25
+ import jax
26
+ import numpy as np
27
+ from flax.core import freeze, unfreeze
28
+ from transformers import GenerationConfig, WhisperFeatureExtractor, WhisperProcessor
29
+
30
+ from distil_whisper import FlaxWhisperForConditionalGeneration
31
+
32
+
33
+ logger = logging.getLogger(__name__)
34
+
35
+
36
+ def parse_args():
37
+ parser = argparse.ArgumentParser(
38
+ description="Initialise a student Whisper model from a teacher model, copying the relevant layer weights and adjusting the processor as necessary."
39
+ )
40
+ parser.add_argument(
41
+ "--teacher_checkpoint",
42
+ type=str,
43
+ required=True,
44
+ help="The HF Hub ID of the teacher checkpoint.",
45
+ )
46
+ parser.add_argument(
47
+ "--subfolder",
48
+ type=str,
49
+ default="",
50
+ help="In case the relevant teacher weights are located inside a subfolder of the model repo on huggingface.co, you "
51
+ "can specify the folder name here.",
52
+ )
53
+ parser.add_argument(
54
+ "--encoder_layers",
55
+ type=int,
56
+ default=None,
57
+ help="Number of encoder layers to use in the student model. Defaults to all layers from the teacher.",
58
+ )
59
+ parser.add_argument(
60
+ "--decoder_layers",
61
+ type=int,
62
+ default=2,
63
+ help="Number of decoder layers to use in the student model. Defaults to 2 layers.",
64
+ )
65
+ parser.add_argument(
66
+ "--max_source_positions",
67
+ type=int,
68
+ default=None,
69
+ help="The maximum sequence length of log-mel filter-bank features that this model might ever be used with. Can "
70
+ "be used to create a student model with a shorter context length than the teacher model. Defaults to the number "
71
+ "of source positions in the teacher model (1500).",
72
+ )
73
+ parser.add_argument(
74
+ "--save_dir",
75
+ type=str,
76
+ required=True,
77
+ help="Where to save the student weights and processor.",
78
+ )
79
+ parser.add_argument(
80
+ "--push_to_hub",
81
+ type=bool,
82
+ required=False,
83
+ default=False,
84
+ help="Whether to push the student weights and processor to the Hub.",
85
+ )
86
+ parser.add_argument(
87
+ "--cache_dir",
88
+ type=str,
89
+ default=None,
90
+ help="Where to store the pretrained models downloaded from huggingface.co",
91
+ )
92
+
93
+ args = parser.parse_args()
94
+ return args
95
+
96
+
97
+ def init_student_model_from_teacher(
98
+ teacher_checkpoint,
99
+ encoder_layers=None,
100
+ decoder_layers=2,
101
+ max_source_positions=None,
102
+ save_dir=None,
103
+ push_to_hub=None,
104
+ cache_dir=None,
105
+ subfolder="",
106
+ ):
107
+ teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained(
108
+ teacher_checkpoint,
109
+ _do_init=False,
110
+ cache_dir=cache_dir,
111
+ subfolder=subfolder,
112
+ )
113
+ processor = WhisperProcessor.from_pretrained(teacher_checkpoint)
114
+ generation_config = GenerationConfig.from_pretrained(teacher_checkpoint)
115
+
116
+ teacher_config = teacher_model.config
117
+ teacher_encoder_layers = teacher_config.encoder_layers
118
+ teacher_decoder_layers = teacher_config.decoder_layers
119
+
120
+ student_config = copy.deepcopy(teacher_config)
121
+ student_config.update(
122
+ {
123
+ "encoder_layers": encoder_layers if encoder_layers is not None else teacher_encoder_layers,
124
+ "decoder_layers": decoder_layers,
125
+ "max_source_positions": (
126
+ max_source_positions if max_source_positions is not None else student_config.max_source_positions
127
+ ),
128
+ }
129
+ )
130
+
131
+ encoder_mapping = np.linspace(0, teacher_encoder_layers - 1, student_config.encoder_layers, dtype=int)
132
+ encoder_mapping[-1] = teacher_encoder_layers - 1
133
+
134
+ encoder_map = {}
135
+ for student_layer, teacher_layer in enumerate(encoder_mapping):
136
+ encoder_map[str(teacher_layer)] = str(student_layer)
137
+
138
+ decoder_mapping = np.linspace(0, teacher_decoder_layers - 1, student_config.decoder_layers, dtype=int)
139
+ decoder_mapping[-1] = teacher_decoder_layers - 1
140
+
141
+ decoder_map = {}
142
+ for student_layer, teacher_layer in enumerate(decoder_mapping):
143
+ decoder_map[str(teacher_layer)] = str(student_layer)
144
+
145
+ # init the student params from the teacher model
146
+ student_params = unfreeze(teacher_params)
147
+ student_params["model"]["decoder"]["layers"] = {}
148
+
149
+ for layer in teacher_params["model"]["decoder"]["layers"]:
150
+ if layer in decoder_map:
151
+ # re-introduce pre-defined layers from the teacher
152
+ student_params["model"]["decoder"]["layers"][decoder_map[layer]] = teacher_params["model"]["decoder"][
153
+ "layers"
154
+ ][layer]
155
+
156
+ if encoder_layers is not None:
157
+ student_params["model"]["encoder"]["layers"] = {}
158
+ for layer in teacher_params["model"]["encoder"]["layers"]:
159
+ if layer in encoder_map:
160
+ # re-introduce pre-defined layers from the teacher
161
+ student_params["model"]["encoder"]["layers"][encoder_map[layer]] = teacher_params["model"]["encoder"][
162
+ "layers"
163
+ ][layer]
164
+
165
+ if max_source_positions is not None:
166
+ # slice the first MAX_SOURCE_POSITIONS embedding weights
167
+ student_params["model"]["encoder"]["embed_positions"]["embedding"] = teacher_params["model"]["encoder"][
168
+ "embed_positions"
169
+ ]["embedding"][: student_config.max_source_positions, :]
170
+ # update the feature extractor to handle the new input length
171
+ chunk_length = int(student_config.max_source_positions * 2 / 100)
172
+ processor.feature_extractor = WhisperFeatureExtractor(chunk_length=chunk_length)
173
+
174
+ # remove the teacher params and model
175
+ del teacher_params, teacher_model
176
+
177
+ # save the converted weights and model
178
+ student_params = freeze(student_params)
179
+ student_model = FlaxWhisperForConditionalGeneration(student_config, _do_init=False)
180
+
181
+ if save_dir is not None:
182
+ student_model.save_pretrained(save_dir, params=student_params)
183
+ # we also need to correctly save the processor and generation config
184
+ processor.save_pretrained(save_dir)
185
+ generation_config.save_pretrained(save_dir)
186
+
187
+ # check we can do a forward pass with the saved model - first load the weights and processor
188
+ logger.info("Checking we can load the saved model...")
189
+ student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained(
190
+ save_dir,
191
+ _do_init=False,
192
+ )
193
+ processor = WhisperProcessor.from_pretrained(save_dir)
194
+
195
+ # define some random inputs
196
+ input_features = processor(np.ones(16000), sampling_rate=16000, return_tensors="np").input_features
197
+ decoder_start_token_id = student_model.config.decoder_start_token_id
198
+ decoder_input_ids = np.ones((input_features.shape[0], 1)) * decoder_start_token_id
199
+
200
+ # do a forward pass - outputs will be gibberish for the initialised model so we can't check them
201
+ logger.info("Checking we can run the converted model forward...")
202
+ _ = student_model(input_features, decoder_input_ids=decoder_input_ids, params=student_params).logits
203
+ logger.info("Conversion successful!")
204
+
205
+ if push_to_hub:
206
+ student_model.push_to_hub(save_dir, params=student_params)
207
+ processor.push_to_hub(save_dir)
208
+ generation_config.push_to_hub(save_dir)
209
+
210
+
211
+ if __name__ == "__main__":
212
+ args = parse_args()
213
+
214
+ # Set the verbosity to info of the logger - we only want one process per machine to log things on the screen
215
+ logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
216
+
217
+ init_student_model_from_teacher(
218
+ teacher_checkpoint=args.teacher_checkpoint,
219
+ encoder_layers=args.encoder_layers,
220
+ decoder_layers=args.decoder_layers,
221
+ max_source_positions=args.max_source_positions,
222
+ save_dir=args.save_dir,
223
+ push_to_hub=args.push_to_hub,
224
+ cache_dir=args.cache_dir,
225
+ subfolder=args.subfolder,
226
+ )
nb-distil-large-init/added_tokens.json ADDED
@@ -0,0 +1,1611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 50365,
3
+ "<|0.02|>": 50366,
4
+ "<|0.04|>": 50367,
5
+ "<|0.06|>": 50368,
6
+ "<|0.08|>": 50369,
7
+ "<|0.10|>": 50370,
8
+ "<|0.12|>": 50371,
9
+ "<|0.14|>": 50372,
10
+ "<|0.16|>": 50373,
11
+ "<|0.18|>": 50374,
12
+ "<|0.20|>": 50375,
13
+ "<|0.22|>": 50376,
14
+ "<|0.24|>": 50377,
15
+ "<|0.26|>": 50378,
16
+ "<|0.28|>": 50379,
17
+ "<|0.30|>": 50380,
18
+ "<|0.32|>": 50381,
19
+ "<|0.34|>": 50382,
20
+ "<|0.36|>": 50383,
21
+ "<|0.38|>": 50384,
22
+ "<|0.40|>": 50385,
23
+ "<|0.42|>": 50386,
24
+ "<|0.44|>": 50387,
25
+ "<|0.46|>": 50388,
26
+ "<|0.48|>": 50389,
27
+ "<|0.50|>": 50390,
28
+ "<|0.52|>": 50391,
29
+ "<|0.54|>": 50392,
30
+ "<|0.56|>": 50393,
31
+ "<|0.58|>": 50394,
32
+ "<|0.60|>": 50395,
33
+ "<|0.62|>": 50396,
34
+ "<|0.64|>": 50397,
35
+ "<|0.66|>": 50398,
36
+ "<|0.68|>": 50399,
37
+ "<|0.70|>": 50400,
38
+ "<|0.72|>": 50401,
39
+ "<|0.74|>": 50402,
40
+ "<|0.76|>": 50403,
41
+ "<|0.78|>": 50404,
42
+ "<|0.80|>": 50405,
43
+ "<|0.82|>": 50406,
44
+ "<|0.84|>": 50407,
45
+ "<|0.86|>": 50408,
46
+ "<|0.88|>": 50409,
47
+ "<|0.90|>": 50410,
48
+ "<|0.92|>": 50411,
49
+ "<|0.94|>": 50412,
50
+ "<|0.96|>": 50413,
51
+ "<|0.98|>": 50414,
52
+ "<|1.00|>": 50415,
53
+ "<|1.02|>": 50416,
54
+ "<|1.04|>": 50417,
55
+ "<|1.06|>": 50418,
56
+ "<|1.08|>": 50419,
57
+ "<|1.10|>": 50420,
58
+ "<|1.12|>": 50421,
59
+ "<|1.14|>": 50422,
60
+ "<|1.16|>": 50423,
61
+ "<|1.18|>": 50424,
62
+ "<|1.20|>": 50425,
63
+ "<|1.22|>": 50426,
64
+ "<|1.24|>": 50427,
65
+ "<|1.26|>": 50428,
66
+ "<|1.28|>": 50429,
67
+ "<|1.30|>": 50430,
68
+ "<|1.32|>": 50431,
69
+ "<|1.34|>": 50432,
70
+ "<|1.36|>": 50433,
71
+ "<|1.38|>": 50434,
72
+ "<|1.40|>": 50435,
73
+ "<|1.42|>": 50436,
74
+ "<|1.44|>": 50437,
75
+ "<|1.46|>": 50438,
76
+ "<|1.48|>": 50439,
77
+ "<|1.50|>": 50440,
78
+ "<|1.52|>": 50441,
79
+ "<|1.54|>": 50442,
80
+ "<|1.56|>": 50443,
81
+ "<|1.58|>": 50444,
82
+ "<|1.60|>": 50445,
83
+ "<|1.62|>": 50446,
84
+ "<|1.64|>": 50447,
85
+ "<|1.66|>": 50448,
86
+ "<|1.68|>": 50449,
87
+ "<|1.70|>": 50450,
88
+ "<|1.72|>": 50451,
89
+ "<|1.74|>": 50452,
90
+ "<|1.76|>": 50453,
91
+ "<|1.78|>": 50454,
92
+ "<|1.80|>": 50455,
93
+ "<|1.82|>": 50456,
94
+ "<|1.84|>": 50457,
95
+ "<|1.86|>": 50458,
96
+ "<|1.88|>": 50459,
97
+ "<|1.90|>": 50460,
98
+ "<|1.92|>": 50461,
99
+ "<|1.94|>": 50462,
100
+ "<|1.96|>": 50463,
101
+ "<|1.98|>": 50464,
102
+ "<|10.00|>": 50865,
103
+ "<|10.02|>": 50866,
104
+ "<|10.04|>": 50867,
105
+ "<|10.06|>": 50868,
106
+ "<|10.08|>": 50869,
107
+ "<|10.10|>": 50870,
108
+ "<|10.12|>": 50871,
109
+ "<|10.14|>": 50872,
110
+ "<|10.16|>": 50873,
111
+ "<|10.18|>": 50874,
112
+ "<|10.20|>": 50875,
113
+ "<|10.22|>": 50876,
114
+ "<|10.24|>": 50877,
115
+ "<|10.26|>": 50878,
116
+ "<|10.28|>": 50879,
117
+ "<|10.30|>": 50880,
118
+ "<|10.32|>": 50881,
119
+ "<|10.34|>": 50882,
120
+ "<|10.36|>": 50883,
121
+ "<|10.38|>": 50884,
122
+ "<|10.40|>": 50885,
123
+ "<|10.42|>": 50886,
124
+ "<|10.44|>": 50887,
125
+ "<|10.46|>": 50888,
126
+ "<|10.48|>": 50889,
127
+ "<|10.50|>": 50890,
128
+ "<|10.52|>": 50891,
129
+ "<|10.54|>": 50892,
130
+ "<|10.56|>": 50893,
131
+ "<|10.58|>": 50894,
132
+ "<|10.60|>": 50895,
133
+ "<|10.62|>": 50896,
134
+ "<|10.64|>": 50897,
135
+ "<|10.66|>": 50898,
136
+ "<|10.68|>": 50899,
137
+ "<|10.70|>": 50900,
138
+ "<|10.72|>": 50901,
139
+ "<|10.74|>": 50902,
140
+ "<|10.76|>": 50903,
141
+ "<|10.78|>": 50904,
142
+ "<|10.80|>": 50905,
143
+ "<|10.82|>": 50906,
144
+ "<|10.84|>": 50907,
145
+ "<|10.86|>": 50908,
146
+ "<|10.88|>": 50909,
147
+ "<|10.90|>": 50910,
148
+ "<|10.92|>": 50911,
149
+ "<|10.94|>": 50912,
150
+ "<|10.96|>": 50913,
151
+ "<|10.98|>": 50914,
152
+ "<|11.00|>": 50915,
153
+ "<|11.02|>": 50916,
154
+ "<|11.04|>": 50917,
155
+ "<|11.06|>": 50918,
156
+ "<|11.08|>": 50919,
157
+ "<|11.10|>": 50920,
158
+ "<|11.12|>": 50921,
159
+ "<|11.14|>": 50922,
160
+ "<|11.16|>": 50923,
161
+ "<|11.18|>": 50924,
162
+ "<|11.20|>": 50925,
163
+ "<|11.22|>": 50926,
164
+ "<|11.24|>": 50927,
165
+ "<|11.26|>": 50928,
166
+ "<|11.28|>": 50929,
167
+ "<|11.30|>": 50930,
168
+ "<|11.32|>": 50931,
169
+ "<|11.34|>": 50932,
170
+ "<|11.36|>": 50933,
171
+ "<|11.38|>": 50934,
172
+ "<|11.40|>": 50935,
173
+ "<|11.42|>": 50936,
174
+ "<|11.44|>": 50937,
175
+ "<|11.46|>": 50938,
176
+ "<|11.48|>": 50939,
177
+ "<|11.50|>": 50940,
178
+ "<|11.52|>": 50941,
179
+ "<|11.54|>": 50942,
180
+ "<|11.56|>": 50943,
181
+ "<|11.58|>": 50944,
182
+ "<|11.60|>": 50945,
183
+ "<|11.62|>": 50946,
184
+ "<|11.64|>": 50947,
185
+ "<|11.66|>": 50948,
186
+ "<|11.68|>": 50949,
187
+ "<|11.70|>": 50950,
188
+ "<|11.72|>": 50951,
189
+ "<|11.74|>": 50952,
190
+ "<|11.76|>": 50953,
191
+ "<|11.78|>": 50954,
192
+ "<|11.80|>": 50955,
193
+ "<|11.82|>": 50956,
194
+ "<|11.84|>": 50957,
195
+ "<|11.86|>": 50958,
196
+ "<|11.88|>": 50959,
197
+ "<|11.90|>": 50960,
198
+ "<|11.92|>": 50961,
199
+ "<|11.94|>": 50962,
200
+ "<|11.96|>": 50963,
201
+ "<|11.98|>": 50964,
202
+ "<|12.00|>": 50965,
203
+ "<|12.02|>": 50966,
204
+ "<|12.04|>": 50967,
205
+ "<|12.06|>": 50968,
206
+ "<|12.08|>": 50969,
207
+ "<|12.10|>": 50970,
208
+ "<|12.12|>": 50971,
209
+ "<|12.14|>": 50972,
210
+ "<|12.16|>": 50973,
211
+ "<|12.18|>": 50974,
212
+ "<|12.20|>": 50975,
213
+ "<|12.22|>": 50976,
214
+ "<|12.24|>": 50977,
215
+ "<|12.26|>": 50978,
216
+ "<|12.28|>": 50979,
217
+ "<|12.30|>": 50980,
218
+ "<|12.32|>": 50981,
219
+ "<|12.34|>": 50982,
220
+ "<|12.36|>": 50983,
221
+ "<|12.38|>": 50984,
222
+ "<|12.40|>": 50985,
223
+ "<|12.42|>": 50986,
224
+ "<|12.44|>": 50987,
225
+ "<|12.46|>": 50988,
226
+ "<|12.48|>": 50989,
227
+ "<|12.50|>": 50990,
228
+ "<|12.52|>": 50991,
229
+ "<|12.54|>": 50992,
230
+ "<|12.56|>": 50993,
231
+ "<|12.58|>": 50994,
232
+ "<|12.60|>": 50995,
233
+ "<|12.62|>": 50996,
234
+ "<|12.64|>": 50997,
235
+ "<|12.66|>": 50998,
236
+ "<|12.68|>": 50999,
237
+ "<|12.70|>": 51000,
238
+ "<|12.72|>": 51001,
239
+ "<|12.74|>": 51002,
240
+ "<|12.76|>": 51003,
241
+ "<|12.78|>": 51004,
242
+ "<|12.80|>": 51005,
243
+ "<|12.82|>": 51006,
244
+ "<|12.84|>": 51007,
245
+ "<|12.86|>": 51008,
246
+ "<|12.88|>": 51009,
247
+ "<|12.90|>": 51010,
248
+ "<|12.92|>": 51011,
249
+ "<|12.94|>": 51012,
250
+ "<|12.96|>": 51013,
251
+ "<|12.98|>": 51014,
252
+ "<|13.00|>": 51015,
253
+ "<|13.02|>": 51016,
254
+ "<|13.04|>": 51017,
255
+ "<|13.06|>": 51018,
256
+ "<|13.08|>": 51019,
257
+ "<|13.10|>": 51020,
258
+ "<|13.12|>": 51021,
259
+ "<|13.14|>": 51022,
260
+ "<|13.16|>": 51023,
261
+ "<|13.18|>": 51024,
262
+ "<|13.20|>": 51025,
263
+ "<|13.22|>": 51026,
264
+ "<|13.24|>": 51027,
265
+ "<|13.26|>": 51028,
266
+ "<|13.28|>": 51029,
267
+ "<|13.30|>": 51030,
268
+ "<|13.32|>": 51031,
269
+ "<|13.34|>": 51032,
270
+ "<|13.36|>": 51033,
271
+ "<|13.38|>": 51034,
272
+ "<|13.40|>": 51035,
273
+ "<|13.42|>": 51036,
274
+ "<|13.44|>": 51037,
275
+ "<|13.46|>": 51038,
276
+ "<|13.48|>": 51039,
277
+ "<|13.50|>": 51040,
278
+ "<|13.52|>": 51041,
279
+ "<|13.54|>": 51042,
280
+ "<|13.56|>": 51043,
281
+ "<|13.58|>": 51044,
282
+ "<|13.60|>": 51045,
283
+ "<|13.62|>": 51046,
284
+ "<|13.64|>": 51047,
285
+ "<|13.66|>": 51048,
286
+ "<|13.68|>": 51049,
287
+ "<|13.70|>": 51050,
288
+ "<|13.72|>": 51051,
289
+ "<|13.74|>": 51052,
290
+ "<|13.76|>": 51053,
291
+ "<|13.78|>": 51054,
292
+ "<|13.80|>": 51055,
293
+ "<|13.82|>": 51056,
294
+ "<|13.84|>": 51057,
295
+ "<|13.86|>": 51058,
296
+ "<|13.88|>": 51059,
297
+ "<|13.90|>": 51060,
298
+ "<|13.92|>": 51061,
299
+ "<|13.94|>": 51062,
300
+ "<|13.96|>": 51063,
301
+ "<|13.98|>": 51064,
302
+ "<|14.00|>": 51065,
303
+ "<|14.02|>": 51066,
304
+ "<|14.04|>": 51067,
305
+ "<|14.06|>": 51068,
306
+ "<|14.08|>": 51069,
307
+ "<|14.10|>": 51070,
308
+ "<|14.12|>": 51071,
309
+ "<|14.14|>": 51072,
310
+ "<|14.16|>": 51073,
311
+ "<|14.18|>": 51074,
312
+ "<|14.20|>": 51075,
313
+ "<|14.22|>": 51076,
314
+ "<|14.24|>": 51077,
315
+ "<|14.26|>": 51078,
316
+ "<|14.28|>": 51079,
317
+ "<|14.30|>": 51080,
318
+ "<|14.32|>": 51081,
319
+ "<|14.34|>": 51082,
320
+ "<|14.36|>": 51083,
321
+ "<|14.38|>": 51084,
322
+ "<|14.40|>": 51085,
323
+ "<|14.42|>": 51086,
324
+ "<|14.44|>": 51087,
325
+ "<|14.46|>": 51088,
326
+ "<|14.48|>": 51089,
327
+ "<|14.50|>": 51090,
328
+ "<|14.52|>": 51091,
329
+ "<|14.54|>": 51092,
330
+ "<|14.56|>": 51093,
331
+ "<|14.58|>": 51094,
332
+ "<|14.60|>": 51095,
333
+ "<|14.62|>": 51096,
334
+ "<|14.64|>": 51097,
335
+ "<|14.66|>": 51098,
336
+ "<|14.68|>": 51099,
337
+ "<|14.70|>": 51100,
338
+ "<|14.72|>": 51101,
339
+ "<|14.74|>": 51102,
340
+ "<|14.76|>": 51103,
341
+ "<|14.78|>": 51104,
342
+ "<|14.80|>": 51105,
343
+ "<|14.82|>": 51106,
344
+ "<|14.84|>": 51107,
345
+ "<|14.86|>": 51108,
346
+ "<|14.88|>": 51109,
347
+ "<|14.90|>": 51110,
348
+ "<|14.92|>": 51111,
349
+ "<|14.94|>": 51112,
350
+ "<|14.96|>": 51113,
351
+ "<|14.98|>": 51114,
352
+ "<|15.00|>": 51115,
353
+ "<|15.02|>": 51116,
354
+ "<|15.04|>": 51117,
355
+ "<|15.06|>": 51118,
356
+ "<|15.08|>": 51119,
357
+ "<|15.10|>": 51120,
358
+ "<|15.12|>": 51121,
359
+ "<|15.14|>": 51122,
360
+ "<|15.16|>": 51123,
361
+ "<|15.18|>": 51124,
362
+ "<|15.20|>": 51125,
363
+ "<|15.22|>": 51126,
364
+ "<|15.24|>": 51127,
365
+ "<|15.26|>": 51128,
366
+ "<|15.28|>": 51129,
367
+ "<|15.30|>": 51130,
368
+ "<|15.32|>": 51131,
369
+ "<|15.34|>": 51132,
370
+ "<|15.36|>": 51133,
371
+ "<|15.38|>": 51134,
372
+ "<|15.40|>": 51135,
373
+ "<|15.42|>": 51136,
374
+ "<|15.44|>": 51137,
375
+ "<|15.46|>": 51138,
376
+ "<|15.48|>": 51139,
377
+ "<|15.50|>": 51140,
378
+ "<|15.52|>": 51141,
379
+ "<|15.54|>": 51142,
380
+ "<|15.56|>": 51143,
381
+ "<|15.58|>": 51144,
382
+ "<|15.60|>": 51145,
383
+ "<|15.62|>": 51146,
384
+ "<|15.64|>": 51147,
385
+ "<|15.66|>": 51148,
386
+ "<|15.68|>": 51149,
387
+ "<|15.70|>": 51150,
388
+ "<|15.72|>": 51151,
389
+ "<|15.74|>": 51152,
390
+ "<|15.76|>": 51153,
391
+ "<|15.78|>": 51154,
392
+ "<|15.80|>": 51155,
393
+ "<|15.82|>": 51156,
394
+ "<|15.84|>": 51157,
395
+ "<|15.86|>": 51158,
396
+ "<|15.88|>": 51159,
397
+ "<|15.90|>": 51160,
398
+ "<|15.92|>": 51161,
399
+ "<|15.94|>": 51162,
400
+ "<|15.96|>": 51163,
401
+ "<|15.98|>": 51164,
402
+ "<|16.00|>": 51165,
403
+ "<|16.02|>": 51166,
404
+ "<|16.04|>": 51167,
405
+ "<|16.06|>": 51168,
406
+ "<|16.08|>": 51169,
407
+ "<|16.10|>": 51170,
408
+ "<|16.12|>": 51171,
409
+ "<|16.14|>": 51172,
410
+ "<|16.16|>": 51173,
411
+ "<|16.18|>": 51174,
412
+ "<|16.20|>": 51175,
413
+ "<|16.22|>": 51176,
414
+ "<|16.24|>": 51177,
415
+ "<|16.26|>": 51178,
416
+ "<|16.28|>": 51179,
417
+ "<|16.30|>": 51180,
418
+ "<|16.32|>": 51181,
419
+ "<|16.34|>": 51182,
420
+ "<|16.36|>": 51183,
421
+ "<|16.38|>": 51184,
422
+ "<|16.40|>": 51185,
423
+ "<|16.42|>": 51186,
424
+ "<|16.44|>": 51187,
425
+ "<|16.46|>": 51188,
426
+ "<|16.48|>": 51189,
427
+ "<|16.50|>": 51190,
428
+ "<|16.52|>": 51191,
429
+ "<|16.54|>": 51192,
430
+ "<|16.56|>": 51193,
431
+ "<|16.58|>": 51194,
432
+ "<|16.60|>": 51195,
433
+ "<|16.62|>": 51196,
434
+ "<|16.64|>": 51197,
435
+ "<|16.66|>": 51198,
436
+ "<|16.68|>": 51199,
437
+ "<|16.70|>": 51200,
438
+ "<|16.72|>": 51201,
439
+ "<|16.74|>": 51202,
440
+ "<|16.76|>": 51203,
441
+ "<|16.78|>": 51204,
442
+ "<|16.80|>": 51205,
443
+ "<|16.82|>": 51206,
444
+ "<|16.84|>": 51207,
445
+ "<|16.86|>": 51208,
446
+ "<|16.88|>": 51209,
447
+ "<|16.90|>": 51210,
448
+ "<|16.92|>": 51211,
449
+ "<|16.94|>": 51212,
450
+ "<|16.96|>": 51213,
451
+ "<|16.98|>": 51214,
452
+ "<|17.00|>": 51215,
453
+ "<|17.02|>": 51216,
454
+ "<|17.04|>": 51217,
455
+ "<|17.06|>": 51218,
456
+ "<|17.08|>": 51219,
457
+ "<|17.10|>": 51220,
458
+ "<|17.12|>": 51221,
459
+ "<|17.14|>": 51222,
460
+ "<|17.16|>": 51223,
461
+ "<|17.18|>": 51224,
462
+ "<|17.20|>": 51225,
463
+ "<|17.22|>": 51226,
464
+ "<|17.24|>": 51227,
465
+ "<|17.26|>": 51228,
466
+ "<|17.28|>": 51229,
467
+ "<|17.30|>": 51230,
468
+ "<|17.32|>": 51231,
469
+ "<|17.34|>": 51232,
470
+ "<|17.36|>": 51233,
471
+ "<|17.38|>": 51234,
472
+ "<|17.40|>": 51235,
473
+ "<|17.42|>": 51236,
474
+ "<|17.44|>": 51237,
475
+ "<|17.46|>": 51238,
476
+ "<|17.48|>": 51239,
477
+ "<|17.50|>": 51240,
478
+ "<|17.52|>": 51241,
479
+ "<|17.54|>": 51242,
480
+ "<|17.56|>": 51243,
481
+ "<|17.58|>": 51244,
482
+ "<|17.60|>": 51245,
483
+ "<|17.62|>": 51246,
484
+ "<|17.64|>": 51247,
485
+ "<|17.66|>": 51248,
486
+ "<|17.68|>": 51249,
487
+ "<|17.70|>": 51250,
488
+ "<|17.72|>": 51251,
489
+ "<|17.74|>": 51252,
490
+ "<|17.76|>": 51253,
491
+ "<|17.78|>": 51254,
492
+ "<|17.80|>": 51255,
493
+ "<|17.82|>": 51256,
494
+ "<|17.84|>": 51257,
495
+ "<|17.86|>": 51258,
496
+ "<|17.88|>": 51259,
497
+ "<|17.90|>": 51260,
498
+ "<|17.92|>": 51261,
499
+ "<|17.94|>": 51262,
500
+ "<|17.96|>": 51263,
501
+ "<|17.98|>": 51264,
502
+ "<|18.00|>": 51265,
503
+ "<|18.02|>": 51266,
504
+ "<|18.04|>": 51267,
505
+ "<|18.06|>": 51268,
506
+ "<|18.08|>": 51269,
507
+ "<|18.10|>": 51270,
508
+ "<|18.12|>": 51271,
509
+ "<|18.14|>": 51272,
510
+ "<|18.16|>": 51273,
511
+ "<|18.18|>": 51274,
512
+ "<|18.20|>": 51275,
513
+ "<|18.22|>": 51276,
514
+ "<|18.24|>": 51277,
515
+ "<|18.26|>": 51278,
516
+ "<|18.28|>": 51279,
517
+ "<|18.30|>": 51280,
518
+ "<|18.32|>": 51281,
519
+ "<|18.34|>": 51282,
520
+ "<|18.36|>": 51283,
521
+ "<|18.38|>": 51284,
522
+ "<|18.40|>": 51285,
523
+ "<|18.42|>": 51286,
524
+ "<|18.44|>": 51287,
525
+ "<|18.46|>": 51288,
526
+ "<|18.48|>": 51289,
527
+ "<|18.50|>": 51290,
528
+ "<|18.52|>": 51291,
529
+ "<|18.54|>": 51292,
530
+ "<|18.56|>": 51293,
531
+ "<|18.58|>": 51294,
532
+ "<|18.60|>": 51295,
533
+ "<|18.62|>": 51296,
534
+ "<|18.64|>": 51297,
535
+ "<|18.66|>": 51298,
536
+ "<|18.68|>": 51299,
537
+ "<|18.70|>": 51300,
538
+ "<|18.72|>": 51301,
539
+ "<|18.74|>": 51302,
540
+ "<|18.76|>": 51303,
541
+ "<|18.78|>": 51304,
542
+ "<|18.80|>": 51305,
543
+ "<|18.82|>": 51306,
544
+ "<|18.84|>": 51307,
545
+ "<|18.86|>": 51308,
546
+ "<|18.88|>": 51309,
547
+ "<|18.90|>": 51310,
548
+ "<|18.92|>": 51311,
549
+ "<|18.94|>": 51312,
550
+ "<|18.96|>": 51313,
551
+ "<|18.98|>": 51314,
552
+ "<|19.00|>": 51315,
553
+ "<|19.02|>": 51316,
554
+ "<|19.04|>": 51317,
555
+ "<|19.06|>": 51318,
556
+ "<|19.08|>": 51319,
557
+ "<|19.10|>": 51320,
558
+ "<|19.12|>": 51321,
559
+ "<|19.14|>": 51322,
560
+ "<|19.16|>": 51323,
561
+ "<|19.18|>": 51324,
562
+ "<|19.20|>": 51325,
563
+ "<|19.22|>": 51326,
564
+ "<|19.24|>": 51327,
565
+ "<|19.26|>": 51328,
566
+ "<|19.28|>": 51329,
567
+ "<|19.30|>": 51330,
568
+ "<|19.32|>": 51331,
569
+ "<|19.34|>": 51332,
570
+ "<|19.36|>": 51333,
571
+ "<|19.38|>": 51334,
572
+ "<|19.40|>": 51335,
573
+ "<|19.42|>": 51336,
574
+ "<|19.44|>": 51337,
575
+ "<|19.46|>": 51338,
576
+ "<|19.48|>": 51339,
577
+ "<|19.50|>": 51340,
578
+ "<|19.52|>": 51341,
579
+ "<|19.54|>": 51342,
580
+ "<|19.56|>": 51343,
581
+ "<|19.58|>": 51344,
582
+ "<|19.60|>": 51345,
583
+ "<|19.62|>": 51346,
584
+ "<|19.64|>": 51347,
585
+ "<|19.66|>": 51348,
586
+ "<|19.68|>": 51349,
587
+ "<|19.70|>": 51350,
588
+ "<|19.72|>": 51351,
589
+ "<|19.74|>": 51352,
590
+ "<|19.76|>": 51353,
591
+ "<|19.78|>": 51354,
592
+ "<|19.80|>": 51355,
593
+ "<|19.82|>": 51356,
594
+ "<|19.84|>": 51357,
595
+ "<|19.86|>": 51358,
596
+ "<|19.88|>": 51359,
597
+ "<|19.90|>": 51360,
598
+ "<|19.92|>": 51361,
599
+ "<|19.94|>": 51362,
600
+ "<|19.96|>": 51363,
601
+ "<|19.98|>": 51364,
602
+ "<|2.00|>": 50465,
603
+ "<|2.02|>": 50466,
604
+ "<|2.04|>": 50467,
605
+ "<|2.06|>": 50468,
606
+ "<|2.08|>": 50469,
607
+ "<|2.10|>": 50470,
608
+ "<|2.12|>": 50471,
609
+ "<|2.14|>": 50472,
610
+ "<|2.16|>": 50473,
611
+ "<|2.18|>": 50474,
612
+ "<|2.20|>": 50475,
613
+ "<|2.22|>": 50476,
614
+ "<|2.24|>": 50477,
615
+ "<|2.26|>": 50478,
616
+ "<|2.28|>": 50479,
617
+ "<|2.30|>": 50480,
618
+ "<|2.32|>": 50481,
619
+ "<|2.34|>": 50482,
620
+ "<|2.36|>": 50483,
621
+ "<|2.38|>": 50484,
622
+ "<|2.40|>": 50485,
623
+ "<|2.42|>": 50486,
624
+ "<|2.44|>": 50487,
625
+ "<|2.46|>": 50488,
626
+ "<|2.48|>": 50489,
627
+ "<|2.50|>": 50490,
628
+ "<|2.52|>": 50491,
629
+ "<|2.54|>": 50492,
630
+ "<|2.56|>": 50493,
631
+ "<|2.58|>": 50494,
632
+ "<|2.60|>": 50495,
633
+ "<|2.62|>": 50496,
634
+ "<|2.64|>": 50497,
635
+ "<|2.66|>": 50498,
636
+ "<|2.68|>": 50499,
637
+ "<|2.70|>": 50500,
638
+ "<|2.72|>": 50501,
639
+ "<|2.74|>": 50502,
640
+ "<|2.76|>": 50503,
641
+ "<|2.78|>": 50504,
642
+ "<|2.80|>": 50505,
643
+ "<|2.82|>": 50506,
644
+ "<|2.84|>": 50507,
645
+ "<|2.86|>": 50508,
646
+ "<|2.88|>": 50509,
647
+ "<|2.90|>": 50510,
648
+ "<|2.92|>": 50511,
649
+ "<|2.94|>": 50512,
650
+ "<|2.96|>": 50513,
651
+ "<|2.98|>": 50514,
652
+ "<|20.00|>": 51365,
653
+ "<|20.02|>": 51366,
654
+ "<|20.04|>": 51367,
655
+ "<|20.06|>": 51368,
656
+ "<|20.08|>": 51369,
657
+ "<|20.10|>": 51370,
658
+ "<|20.12|>": 51371,
659
+ "<|20.14|>": 51372,
660
+ "<|20.16|>": 51373,
661
+ "<|20.18|>": 51374,
662
+ "<|20.20|>": 51375,
663
+ "<|20.22|>": 51376,
664
+ "<|20.24|>": 51377,
665
+ "<|20.26|>": 51378,
666
+ "<|20.28|>": 51379,
667
+ "<|20.30|>": 51380,
668
+ "<|20.32|>": 51381,
669
+ "<|20.34|>": 51382,
670
+ "<|20.36|>": 51383,
671
+ "<|20.38|>": 51384,
672
+ "<|20.40|>": 51385,
673
+ "<|20.42|>": 51386,
674
+ "<|20.44|>": 51387,
675
+ "<|20.46|>": 51388,
676
+ "<|20.48|>": 51389,
677
+ "<|20.50|>": 51390,
678
+ "<|20.52|>": 51391,
679
+ "<|20.54|>": 51392,
680
+ "<|20.56|>": 51393,
681
+ "<|20.58|>": 51394,
682
+ "<|20.60|>": 51395,
683
+ "<|20.62|>": 51396,
684
+ "<|20.64|>": 51397,
685
+ "<|20.66|>": 51398,
686
+ "<|20.68|>": 51399,
687
+ "<|20.70|>": 51400,
688
+ "<|20.72|>": 51401,
689
+ "<|20.74|>": 51402,
690
+ "<|20.76|>": 51403,
691
+ "<|20.78|>": 51404,
692
+ "<|20.80|>": 51405,
693
+ "<|20.82|>": 51406,
694
+ "<|20.84|>": 51407,
695
+ "<|20.86|>": 51408,
696
+ "<|20.88|>": 51409,
697
+ "<|20.90|>": 51410,
698
+ "<|20.92|>": 51411,
699
+ "<|20.94|>": 51412,
700
+ "<|20.96|>": 51413,
701
+ "<|20.98|>": 51414,
702
+ "<|21.00|>": 51415,
703
+ "<|21.02|>": 51416,
704
+ "<|21.04|>": 51417,
705
+ "<|21.06|>": 51418,
706
+ "<|21.08|>": 51419,
707
+ "<|21.10|>": 51420,
708
+ "<|21.12|>": 51421,
709
+ "<|21.14|>": 51422,
710
+ "<|21.16|>": 51423,
711
+ "<|21.18|>": 51424,
712
+ "<|21.20|>": 51425,
713
+ "<|21.22|>": 51426,
714
+ "<|21.24|>": 51427,
715
+ "<|21.26|>": 51428,
716
+ "<|21.28|>": 51429,
717
+ "<|21.30|>": 51430,
718
+ "<|21.32|>": 51431,
719
+ "<|21.34|>": 51432,
720
+ "<|21.36|>": 51433,
721
+ "<|21.38|>": 51434,
722
+ "<|21.40|>": 51435,
723
+ "<|21.42|>": 51436,
724
+ "<|21.44|>": 51437,
725
+ "<|21.46|>": 51438,
726
+ "<|21.48|>": 51439,
727
+ "<|21.50|>": 51440,
728
+ "<|21.52|>": 51441,
729
+ "<|21.54|>": 51442,
730
+ "<|21.56|>": 51443,
731
+ "<|21.58|>": 51444,
732
+ "<|21.60|>": 51445,
733
+ "<|21.62|>": 51446,
734
+ "<|21.64|>": 51447,
735
+ "<|21.66|>": 51448,
736
+ "<|21.68|>": 51449,
737
+ "<|21.70|>": 51450,
738
+ "<|21.72|>": 51451,
739
+ "<|21.74|>": 51452,
740
+ "<|21.76|>": 51453,
741
+ "<|21.78|>": 51454,
742
+ "<|21.80|>": 51455,
743
+ "<|21.82|>": 51456,
744
+ "<|21.84|>": 51457,
745
+ "<|21.86|>": 51458,
746
+ "<|21.88|>": 51459,
747
+ "<|21.90|>": 51460,
748
+ "<|21.92|>": 51461,
749
+ "<|21.94|>": 51462,
750
+ "<|21.96|>": 51463,
751
+ "<|21.98|>": 51464,
752
+ "<|22.00|>": 51465,
753
+ "<|22.02|>": 51466,
754
+ "<|22.04|>": 51467,
755
+ "<|22.06|>": 51468,
756
+ "<|22.08|>": 51469,
757
+ "<|22.10|>": 51470,
758
+ "<|22.12|>": 51471,
759
+ "<|22.14|>": 51472,
760
+ "<|22.16|>": 51473,
761
+ "<|22.18|>": 51474,
762
+ "<|22.20|>": 51475,
763
+ "<|22.22|>": 51476,
764
+ "<|22.24|>": 51477,
765
+ "<|22.26|>": 51478,
766
+ "<|22.28|>": 51479,
767
+ "<|22.30|>": 51480,
768
+ "<|22.32|>": 51481,
769
+ "<|22.34|>": 51482,
770
+ "<|22.36|>": 51483,
771
+ "<|22.38|>": 51484,
772
+ "<|22.40|>": 51485,
773
+ "<|22.42|>": 51486,
774
+ "<|22.44|>": 51487,
775
+ "<|22.46|>": 51488,
776
+ "<|22.48|>": 51489,
777
+ "<|22.50|>": 51490,
778
+ "<|22.52|>": 51491,
779
+ "<|22.54|>": 51492,
780
+ "<|22.56|>": 51493,
781
+ "<|22.58|>": 51494,
782
+ "<|22.60|>": 51495,
783
+ "<|22.62|>": 51496,
784
+ "<|22.64|>": 51497,
785
+ "<|22.66|>": 51498,
786
+ "<|22.68|>": 51499,
787
+ "<|22.70|>": 51500,
788
+ "<|22.72|>": 51501,
789
+ "<|22.74|>": 51502,
790
+ "<|22.76|>": 51503,
791
+ "<|22.78|>": 51504,
792
+ "<|22.80|>": 51505,
793
+ "<|22.82|>": 51506,
794
+ "<|22.84|>": 51507,
795
+ "<|22.86|>": 51508,
796
+ "<|22.88|>": 51509,
797
+ "<|22.90|>": 51510,
798
+ "<|22.92|>": 51511,
799
+ "<|22.94|>": 51512,
800
+ "<|22.96|>": 51513,
801
+ "<|22.98|>": 51514,
802
+ "<|23.00|>": 51515,
803
+ "<|23.02|>": 51516,
804
+ "<|23.04|>": 51517,
805
+ "<|23.06|>": 51518,
806
+ "<|23.08|>": 51519,
807
+ "<|23.10|>": 51520,
808
+ "<|23.12|>": 51521,
809
+ "<|23.14|>": 51522,
810
+ "<|23.16|>": 51523,
811
+ "<|23.18|>": 51524,
812
+ "<|23.20|>": 51525,
813
+ "<|23.22|>": 51526,
814
+ "<|23.24|>": 51527,
815
+ "<|23.26|>": 51528,
816
+ "<|23.28|>": 51529,
817
+ "<|23.30|>": 51530,
818
+ "<|23.32|>": 51531,
819
+ "<|23.34|>": 51532,
820
+ "<|23.36|>": 51533,
821
+ "<|23.38|>": 51534,
822
+ "<|23.40|>": 51535,
823
+ "<|23.42|>": 51536,
824
+ "<|23.44|>": 51537,
825
+ "<|23.46|>": 51538,
826
+ "<|23.48|>": 51539,
827
+ "<|23.50|>": 51540,
828
+ "<|23.52|>": 51541,
829
+ "<|23.54|>": 51542,
830
+ "<|23.56|>": 51543,
831
+ "<|23.58|>": 51544,
832
+ "<|23.60|>": 51545,
833
+ "<|23.62|>": 51546,
834
+ "<|23.64|>": 51547,
835
+ "<|23.66|>": 51548,
836
+ "<|23.68|>": 51549,
837
+ "<|23.70|>": 51550,
838
+ "<|23.72|>": 51551,
839
+ "<|23.74|>": 51552,
840
+ "<|23.76|>": 51553,
841
+ "<|23.78|>": 51554,
842
+ "<|23.80|>": 51555,
843
+ "<|23.82|>": 51556,
844
+ "<|23.84|>": 51557,
845
+ "<|23.86|>": 51558,
846
+ "<|23.88|>": 51559,
847
+ "<|23.90|>": 51560,
848
+ "<|23.92|>": 51561,
849
+ "<|23.94|>": 51562,
850
+ "<|23.96|>": 51563,
851
+ "<|23.98|>": 51564,
852
+ "<|24.00|>": 51565,
853
+ "<|24.02|>": 51566,
854
+ "<|24.04|>": 51567,
855
+ "<|24.06|>": 51568,
856
+ "<|24.08|>": 51569,
857
+ "<|24.10|>": 51570,
858
+ "<|24.12|>": 51571,
859
+ "<|24.14|>": 51572,
860
+ "<|24.16|>": 51573,
861
+ "<|24.18|>": 51574,
862
+ "<|24.20|>": 51575,
863
+ "<|24.22|>": 51576,
864
+ "<|24.24|>": 51577,
865
+ "<|24.26|>": 51578,
866
+ "<|24.28|>": 51579,
867
+ "<|24.30|>": 51580,
868
+ "<|24.32|>": 51581,
869
+ "<|24.34|>": 51582,
870
+ "<|24.36|>": 51583,
871
+ "<|24.38|>": 51584,
872
+ "<|24.40|>": 51585,
873
+ "<|24.42|>": 51586,
874
+ "<|24.44|>": 51587,
875
+ "<|24.46|>": 51588,
876
+ "<|24.48|>": 51589,
877
+ "<|24.50|>": 51590,
878
+ "<|24.52|>": 51591,
879
+ "<|24.54|>": 51592,
880
+ "<|24.56|>": 51593,
881
+ "<|24.58|>": 51594,
882
+ "<|24.60|>": 51595,
883
+ "<|24.62|>": 51596,
884
+ "<|24.64|>": 51597,
885
+ "<|24.66|>": 51598,
886
+ "<|24.68|>": 51599,
887
+ "<|24.70|>": 51600,
888
+ "<|24.72|>": 51601,
889
+ "<|24.74|>": 51602,
890
+ "<|24.76|>": 51603,
891
+ "<|24.78|>": 51604,
892
+ "<|24.80|>": 51605,
893
+ "<|24.82|>": 51606,
894
+ "<|24.84|>": 51607,
895
+ "<|24.86|>": 51608,
896
+ "<|24.88|>": 51609,
897
+ "<|24.90|>": 51610,
898
+ "<|24.92|>": 51611,
899
+ "<|24.94|>": 51612,
900
+ "<|24.96|>": 51613,
901
+ "<|24.98|>": 51614,
902
+ "<|25.00|>": 51615,
903
+ "<|25.02|>": 51616,
904
+ "<|25.04|>": 51617,
905
+ "<|25.06|>": 51618,
906
+ "<|25.08|>": 51619,
907
+ "<|25.10|>": 51620,
908
+ "<|25.12|>": 51621,
909
+ "<|25.14|>": 51622,
910
+ "<|25.16|>": 51623,
911
+ "<|25.18|>": 51624,
912
+ "<|25.20|>": 51625,
913
+ "<|25.22|>": 51626,
914
+ "<|25.24|>": 51627,
915
+ "<|25.26|>": 51628,
916
+ "<|25.28|>": 51629,
917
+ "<|25.30|>": 51630,
918
+ "<|25.32|>": 51631,
919
+ "<|25.34|>": 51632,
920
+ "<|25.36|>": 51633,
921
+ "<|25.38|>": 51634,
922
+ "<|25.40|>": 51635,
923
+ "<|25.42|>": 51636,
924
+ "<|25.44|>": 51637,
925
+ "<|25.46|>": 51638,
926
+ "<|25.48|>": 51639,
927
+ "<|25.50|>": 51640,
928
+ "<|25.52|>": 51641,
929
+ "<|25.54|>": 51642,
930
+ "<|25.56|>": 51643,
931
+ "<|25.58|>": 51644,
932
+ "<|25.60|>": 51645,
933
+ "<|25.62|>": 51646,
934
+ "<|25.64|>": 51647,
935
+ "<|25.66|>": 51648,
936
+ "<|25.68|>": 51649,
937
+ "<|25.70|>": 51650,
938
+ "<|25.72|>": 51651,
939
+ "<|25.74|>": 51652,
940
+ "<|25.76|>": 51653,
941
+ "<|25.78|>": 51654,
942
+ "<|25.80|>": 51655,
943
+ "<|25.82|>": 51656,
944
+ "<|25.84|>": 51657,
945
+ "<|25.86|>": 51658,
946
+ "<|25.88|>": 51659,
947
+ "<|25.90|>": 51660,
948
+ "<|25.92|>": 51661,
949
+ "<|25.94|>": 51662,
950
+ "<|25.96|>": 51663,
951
+ "<|25.98|>": 51664,
952
+ "<|26.00|>": 51665,
953
+ "<|26.02|>": 51666,
954
+ "<|26.04|>": 51667,
955
+ "<|26.06|>": 51668,
956
+ "<|26.08|>": 51669,
957
+ "<|26.10|>": 51670,
958
+ "<|26.12|>": 51671,
959
+ "<|26.14|>": 51672,
960
+ "<|26.16|>": 51673,
961
+ "<|26.18|>": 51674,
962
+ "<|26.20|>": 51675,
963
+ "<|26.22|>": 51676,
964
+ "<|26.24|>": 51677,
965
+ "<|26.26|>": 51678,
966
+ "<|26.28|>": 51679,
967
+ "<|26.30|>": 51680,
968
+ "<|26.32|>": 51681,
969
+ "<|26.34|>": 51682,
970
+ "<|26.36|>": 51683,
971
+ "<|26.38|>": 51684,
972
+ "<|26.40|>": 51685,
973
+ "<|26.42|>": 51686,
974
+ "<|26.44|>": 51687,
975
+ "<|26.46|>": 51688,
976
+ "<|26.48|>": 51689,
977
+ "<|26.50|>": 51690,
978
+ "<|26.52|>": 51691,
979
+ "<|26.54|>": 51692,
980
+ "<|26.56|>": 51693,
981
+ "<|26.58|>": 51694,
982
+ "<|26.60|>": 51695,
983
+ "<|26.62|>": 51696,
984
+ "<|26.64|>": 51697,
985
+ "<|26.66|>": 51698,
986
+ "<|26.68|>": 51699,
987
+ "<|26.70|>": 51700,
988
+ "<|26.72|>": 51701,
989
+ "<|26.74|>": 51702,
990
+ "<|26.76|>": 51703,
991
+ "<|26.78|>": 51704,
992
+ "<|26.80|>": 51705,
993
+ "<|26.82|>": 51706,
994
+ "<|26.84|>": 51707,
995
+ "<|26.86|>": 51708,
996
+ "<|26.88|>": 51709,
997
+ "<|26.90|>": 51710,
998
+ "<|26.92|>": 51711,
999
+ "<|26.94|>": 51712,
1000
+ "<|26.96|>": 51713,
1001
+ "<|26.98|>": 51714,
1002
+ "<|27.00|>": 51715,
1003
+ "<|27.02|>": 51716,
1004
+ "<|27.04|>": 51717,
1005
+ "<|27.06|>": 51718,
1006
+ "<|27.08|>": 51719,
1007
+ "<|27.10|>": 51720,
1008
+ "<|27.12|>": 51721,
1009
+ "<|27.14|>": 51722,
1010
+ "<|27.16|>": 51723,
1011
+ "<|27.18|>": 51724,
1012
+ "<|27.20|>": 51725,
1013
+ "<|27.22|>": 51726,
1014
+ "<|27.24|>": 51727,
1015
+ "<|27.26|>": 51728,
1016
+ "<|27.28|>": 51729,
1017
+ "<|27.30|>": 51730,
1018
+ "<|27.32|>": 51731,
1019
+ "<|27.34|>": 51732,
1020
+ "<|27.36|>": 51733,
1021
+ "<|27.38|>": 51734,
1022
+ "<|27.40|>": 51735,
1023
+ "<|27.42|>": 51736,
1024
+ "<|27.44|>": 51737,
1025
+ "<|27.46|>": 51738,
1026
+ "<|27.48|>": 51739,
1027
+ "<|27.50|>": 51740,
1028
+ "<|27.52|>": 51741,
1029
+ "<|27.54|>": 51742,
1030
+ "<|27.56|>": 51743,
1031
+ "<|27.58|>": 51744,
1032
+ "<|27.60|>": 51745,
1033
+ "<|27.62|>": 51746,
1034
+ "<|27.64|>": 51747,
1035
+ "<|27.66|>": 51748,
1036
+ "<|27.68|>": 51749,
1037
+ "<|27.70|>": 51750,
1038
+ "<|27.72|>": 51751,
1039
+ "<|27.74|>": 51752,
1040
+ "<|27.76|>": 51753,
1041
+ "<|27.78|>": 51754,
1042
+ "<|27.80|>": 51755,
1043
+ "<|27.82|>": 51756,
1044
+ "<|27.84|>": 51757,
1045
+ "<|27.86|>": 51758,
1046
+ "<|27.88|>": 51759,
1047
+ "<|27.90|>": 51760,
1048
+ "<|27.92|>": 51761,
1049
+ "<|27.94|>": 51762,
1050
+ "<|27.96|>": 51763,
1051
+ "<|27.98|>": 51764,
1052
+ "<|28.00|>": 51765,
1053
+ "<|28.02|>": 51766,
1054
+ "<|28.04|>": 51767,
1055
+ "<|28.06|>": 51768,
1056
+ "<|28.08|>": 51769,
1057
+ "<|28.10|>": 51770,
1058
+ "<|28.12|>": 51771,
1059
+ "<|28.14|>": 51772,
1060
+ "<|28.16|>": 51773,
1061
+ "<|28.18|>": 51774,
1062
+ "<|28.20|>": 51775,
1063
+ "<|28.22|>": 51776,
1064
+ "<|28.24|>": 51777,
1065
+ "<|28.26|>": 51778,
1066
+ "<|28.28|>": 51779,
1067
+ "<|28.30|>": 51780,
1068
+ "<|28.32|>": 51781,
1069
+ "<|28.34|>": 51782,
1070
+ "<|28.36|>": 51783,
1071
+ "<|28.38|>": 51784,
1072
+ "<|28.40|>": 51785,
1073
+ "<|28.42|>": 51786,
1074
+ "<|28.44|>": 51787,
1075
+ "<|28.46|>": 51788,
1076
+ "<|28.48|>": 51789,
1077
+ "<|28.50|>": 51790,
1078
+ "<|28.52|>": 51791,
1079
+ "<|28.54|>": 51792,
1080
+ "<|28.56|>": 51793,
1081
+ "<|28.58|>": 51794,
1082
+ "<|28.60|>": 51795,
1083
+ "<|28.62|>": 51796,
1084
+ "<|28.64|>": 51797,
1085
+ "<|28.66|>": 51798,
1086
+ "<|28.68|>": 51799,
1087
+ "<|28.70|>": 51800,
1088
+ "<|28.72|>": 51801,
1089
+ "<|28.74|>": 51802,
1090
+ "<|28.76|>": 51803,
1091
+ "<|28.78|>": 51804,
1092
+ "<|28.80|>": 51805,
1093
+ "<|28.82|>": 51806,
1094
+ "<|28.84|>": 51807,
1095
+ "<|28.86|>": 51808,
1096
+ "<|28.88|>": 51809,
1097
+ "<|28.90|>": 51810,
1098
+ "<|28.92|>": 51811,
1099
+ "<|28.94|>": 51812,
1100
+ "<|28.96|>": 51813,
1101
+ "<|28.98|>": 51814,
1102
+ "<|29.00|>": 51815,
1103
+ "<|29.02|>": 51816,
1104
+ "<|29.04|>": 51817,
1105
+ "<|29.06|>": 51818,
1106
+ "<|29.08|>": 51819,
1107
+ "<|29.10|>": 51820,
1108
+ "<|29.12|>": 51821,
1109
+ "<|29.14|>": 51822,
1110
+ "<|29.16|>": 51823,
1111
+ "<|29.18|>": 51824,
1112
+ "<|29.20|>": 51825,
1113
+ "<|29.22|>": 51826,
1114
+ "<|29.24|>": 51827,
1115
+ "<|29.26|>": 51828,
1116
+ "<|29.28|>": 51829,
1117
+ "<|29.30|>": 51830,
1118
+ "<|29.32|>": 51831,
1119
+ "<|29.34|>": 51832,
1120
+ "<|29.36|>": 51833,
1121
+ "<|29.38|>": 51834,
1122
+ "<|29.40|>": 51835,
1123
+ "<|29.42|>": 51836,
1124
+ "<|29.44|>": 51837,
1125
+ "<|29.46|>": 51838,
1126
+ "<|29.48|>": 51839,
1127
+ "<|29.50|>": 51840,
1128
+ "<|29.52|>": 51841,
1129
+ "<|29.54|>": 51842,
1130
+ "<|29.56|>": 51843,
1131
+ "<|29.58|>": 51844,
1132
+ "<|29.60|>": 51845,
1133
+ "<|29.62|>": 51846,
1134
+ "<|29.64|>": 51847,
1135
+ "<|29.66|>": 51848,
1136
+ "<|29.68|>": 51849,
1137
+ "<|29.70|>": 51850,
1138
+ "<|29.72|>": 51851,
1139
+ "<|29.74|>": 51852,
1140
+ "<|29.76|>": 51853,
1141
+ "<|29.78|>": 51854,
1142
+ "<|29.80|>": 51855,
1143
+ "<|29.82|>": 51856,
1144
+ "<|29.84|>": 51857,
1145
+ "<|29.86|>": 51858,
1146
+ "<|29.88|>": 51859,
1147
+ "<|29.90|>": 51860,
1148
+ "<|29.92|>": 51861,
1149
+ "<|29.94|>": 51862,
1150
+ "<|29.96|>": 51863,
1151
+ "<|29.98|>": 51864,
1152
+ "<|3.00|>": 50515,
1153
+ "<|3.02|>": 50516,
1154
+ "<|3.04|>": 50517,
1155
+ "<|3.06|>": 50518,
1156
+ "<|3.08|>": 50519,
1157
+ "<|3.10|>": 50520,
1158
+ "<|3.12|>": 50521,
1159
+ "<|3.14|>": 50522,
1160
+ "<|3.16|>": 50523,
1161
+ "<|3.18|>": 50524,
1162
+ "<|3.20|>": 50525,
1163
+ "<|3.22|>": 50526,
1164
+ "<|3.24|>": 50527,
1165
+ "<|3.26|>": 50528,
1166
+ "<|3.28|>": 50529,
1167
+ "<|3.30|>": 50530,
1168
+ "<|3.32|>": 50531,
1169
+ "<|3.34|>": 50532,
1170
+ "<|3.36|>": 50533,
1171
+ "<|3.38|>": 50534,
1172
+ "<|3.40|>": 50535,
1173
+ "<|3.42|>": 50536,
1174
+ "<|3.44|>": 50537,
1175
+ "<|3.46|>": 50538,
1176
+ "<|3.48|>": 50539,
1177
+ "<|3.50|>": 50540,
1178
+ "<|3.52|>": 50541,
1179
+ "<|3.54|>": 50542,
1180
+ "<|3.56|>": 50543,
1181
+ "<|3.58|>": 50544,
1182
+ "<|3.60|>": 50545,
1183
+ "<|3.62|>": 50546,
1184
+ "<|3.64|>": 50547,
1185
+ "<|3.66|>": 50548,
1186
+ "<|3.68|>": 50549,
1187
+ "<|3.70|>": 50550,
1188
+ "<|3.72|>": 50551,
1189
+ "<|3.74|>": 50552,
1190
+ "<|3.76|>": 50553,
1191
+ "<|3.78|>": 50554,
1192
+ "<|3.80|>": 50555,
1193
+ "<|3.82|>": 50556,
1194
+ "<|3.84|>": 50557,
1195
+ "<|3.86|>": 50558,
1196
+ "<|3.88|>": 50559,
1197
+ "<|3.90|>": 50560,
1198
+ "<|3.92|>": 50561,
1199
+ "<|3.94|>": 50562,
1200
+ "<|3.96|>": 50563,
1201
+ "<|3.98|>": 50564,
1202
+ "<|30.00|>": 51865,
1203
+ "<|4.00|>": 50565,
1204
+ "<|4.02|>": 50566,
1205
+ "<|4.04|>": 50567,
1206
+ "<|4.06|>": 50568,
1207
+ "<|4.08|>": 50569,
1208
+ "<|4.10|>": 50570,
1209
+ "<|4.12|>": 50571,
1210
+ "<|4.14|>": 50572,
1211
+ "<|4.16|>": 50573,
1212
+ "<|4.18|>": 50574,
1213
+ "<|4.20|>": 50575,
1214
+ "<|4.22|>": 50576,
1215
+ "<|4.24|>": 50577,
1216
+ "<|4.26|>": 50578,
1217
+ "<|4.28|>": 50579,
1218
+ "<|4.30|>": 50580,
1219
+ "<|4.32|>": 50581,
1220
+ "<|4.34|>": 50582,
1221
+ "<|4.36|>": 50583,
1222
+ "<|4.38|>": 50584,
1223
+ "<|4.40|>": 50585,
1224
+ "<|4.42|>": 50586,
1225
+ "<|4.44|>": 50587,
1226
+ "<|4.46|>": 50588,
1227
+ "<|4.48|>": 50589,
1228
+ "<|4.50|>": 50590,
1229
+ "<|4.52|>": 50591,
1230
+ "<|4.54|>": 50592,
1231
+ "<|4.56|>": 50593,
1232
+ "<|4.58|>": 50594,
1233
+ "<|4.60|>": 50595,
1234
+ "<|4.62|>": 50596,
1235
+ "<|4.64|>": 50597,
1236
+ "<|4.66|>": 50598,
1237
+ "<|4.68|>": 50599,
1238
+ "<|4.70|>": 50600,
1239
+ "<|4.72|>": 50601,
1240
+ "<|4.74|>": 50602,
1241
+ "<|4.76|>": 50603,
1242
+ "<|4.78|>": 50604,
1243
+ "<|4.80|>": 50605,
1244
+ "<|4.82|>": 50606,
1245
+ "<|4.84|>": 50607,
1246
+ "<|4.86|>": 50608,
1247
+ "<|4.88|>": 50609,
1248
+ "<|4.90|>": 50610,
1249
+ "<|4.92|>": 50611,
1250
+ "<|4.94|>": 50612,
1251
+ "<|4.96|>": 50613,
1252
+ "<|4.98|>": 50614,
1253
+ "<|5.00|>": 50615,
1254
+ "<|5.02|>": 50616,
1255
+ "<|5.04|>": 50617,
1256
+ "<|5.06|>": 50618,
1257
+ "<|5.08|>": 50619,
1258
+ "<|5.10|>": 50620,
1259
+ "<|5.12|>": 50621,
1260
+ "<|5.14|>": 50622,
1261
+ "<|5.16|>": 50623,
1262
+ "<|5.18|>": 50624,
1263
+ "<|5.20|>": 50625,
1264
+ "<|5.22|>": 50626,
1265
+ "<|5.24|>": 50627,
1266
+ "<|5.26|>": 50628,
1267
+ "<|5.28|>": 50629,
1268
+ "<|5.30|>": 50630,
1269
+ "<|5.32|>": 50631,
1270
+ "<|5.34|>": 50632,
1271
+ "<|5.36|>": 50633,
1272
+ "<|5.38|>": 50634,
1273
+ "<|5.40|>": 50635,
1274
+ "<|5.42|>": 50636,
1275
+ "<|5.44|>": 50637,
1276
+ "<|5.46|>": 50638,
1277
+ "<|5.48|>": 50639,
1278
+ "<|5.50|>": 50640,
1279
+ "<|5.52|>": 50641,
1280
+ "<|5.54|>": 50642,
1281
+ "<|5.56|>": 50643,
1282
+ "<|5.58|>": 50644,
1283
+ "<|5.60|>": 50645,
1284
+ "<|5.62|>": 50646,
1285
+ "<|5.64|>": 50647,
1286
+ "<|5.66|>": 50648,
1287
+ "<|5.68|>": 50649,
1288
+ "<|5.70|>": 50650,
1289
+ "<|5.72|>": 50651,
1290
+ "<|5.74|>": 50652,
1291
+ "<|5.76|>": 50653,
1292
+ "<|5.78|>": 50654,
1293
+ "<|5.80|>": 50655,
1294
+ "<|5.82|>": 50656,
1295
+ "<|5.84|>": 50657,
1296
+ "<|5.86|>": 50658,
1297
+ "<|5.88|>": 50659,
1298
+ "<|5.90|>": 50660,
1299
+ "<|5.92|>": 50661,
1300
+ "<|5.94|>": 50662,
1301
+ "<|5.96|>": 50663,
1302
+ "<|5.98|>": 50664,
1303
+ "<|6.00|>": 50665,
1304
+ "<|6.02|>": 50666,
1305
+ "<|6.04|>": 50667,
1306
+ "<|6.06|>": 50668,
1307
+ "<|6.08|>": 50669,
1308
+ "<|6.10|>": 50670,
1309
+ "<|6.12|>": 50671,
1310
+ "<|6.14|>": 50672,
1311
+ "<|6.16|>": 50673,
1312
+ "<|6.18|>": 50674,
1313
+ "<|6.20|>": 50675,
1314
+ "<|6.22|>": 50676,
1315
+ "<|6.24|>": 50677,
1316
+ "<|6.26|>": 50678,
1317
+ "<|6.28|>": 50679,
1318
+ "<|6.30|>": 50680,
1319
+ "<|6.32|>": 50681,
1320
+ "<|6.34|>": 50682,
1321
+ "<|6.36|>": 50683,
1322
+ "<|6.38|>": 50684,
1323
+ "<|6.40|>": 50685,
1324
+ "<|6.42|>": 50686,
1325
+ "<|6.44|>": 50687,
1326
+ "<|6.46|>": 50688,
1327
+ "<|6.48|>": 50689,
1328
+ "<|6.50|>": 50690,
1329
+ "<|6.52|>": 50691,
1330
+ "<|6.54|>": 50692,
1331
+ "<|6.56|>": 50693,
1332
+ "<|6.58|>": 50694,
1333
+ "<|6.60|>": 50695,
1334
+ "<|6.62|>": 50696,
1335
+ "<|6.64|>": 50697,
1336
+ "<|6.66|>": 50698,
1337
+ "<|6.68|>": 50699,
1338
+ "<|6.70|>": 50700,
1339
+ "<|6.72|>": 50701,
1340
+ "<|6.74|>": 50702,
1341
+ "<|6.76|>": 50703,
1342
+ "<|6.78|>": 50704,
1343
+ "<|6.80|>": 50705,
1344
+ "<|6.82|>": 50706,
1345
+ "<|6.84|>": 50707,
1346
+ "<|6.86|>": 50708,
1347
+ "<|6.88|>": 50709,
1348
+ "<|6.90|>": 50710,
1349
+ "<|6.92|>": 50711,
1350
+ "<|6.94|>": 50712,
1351
+ "<|6.96|>": 50713,
1352
+ "<|6.98|>": 50714,
1353
+ "<|7.00|>": 50715,
1354
+ "<|7.02|>": 50716,
1355
+ "<|7.04|>": 50717,
1356
+ "<|7.06|>": 50718,
1357
+ "<|7.08|>": 50719,
1358
+ "<|7.10|>": 50720,
1359
+ "<|7.12|>": 50721,
1360
+ "<|7.14|>": 50722,
1361
+ "<|7.16|>": 50723,
1362
+ "<|7.18|>": 50724,
1363
+ "<|7.20|>": 50725,
1364
+ "<|7.22|>": 50726,
1365
+ "<|7.24|>": 50727,
1366
+ "<|7.26|>": 50728,
1367
+ "<|7.28|>": 50729,
1368
+ "<|7.30|>": 50730,
1369
+ "<|7.32|>": 50731,
1370
+ "<|7.34|>": 50732,
1371
+ "<|7.36|>": 50733,
1372
+ "<|7.38|>": 50734,
1373
+ "<|7.40|>": 50735,
1374
+ "<|7.42|>": 50736,
1375
+ "<|7.44|>": 50737,
1376
+ "<|7.46|>": 50738,
1377
+ "<|7.48|>": 50739,
1378
+ "<|7.50|>": 50740,
1379
+ "<|7.52|>": 50741,
1380
+ "<|7.54|>": 50742,
1381
+ "<|7.56|>": 50743,
1382
+ "<|7.58|>": 50744,
1383
+ "<|7.60|>": 50745,
1384
+ "<|7.62|>": 50746,
1385
+ "<|7.64|>": 50747,
1386
+ "<|7.66|>": 50748,
1387
+ "<|7.68|>": 50749,
1388
+ "<|7.70|>": 50750,
1389
+ "<|7.72|>": 50751,
1390
+ "<|7.74|>": 50752,
1391
+ "<|7.76|>": 50753,
1392
+ "<|7.78|>": 50754,
1393
+ "<|7.80|>": 50755,
1394
+ "<|7.82|>": 50756,
1395
+ "<|7.84|>": 50757,
1396
+ "<|7.86|>": 50758,
1397
+ "<|7.88|>": 50759,
1398
+ "<|7.90|>": 50760,
1399
+ "<|7.92|>": 50761,
1400
+ "<|7.94|>": 50762,
1401
+ "<|7.96|>": 50763,
1402
+ "<|7.98|>": 50764,
1403
+ "<|8.00|>": 50765,
1404
+ "<|8.02|>": 50766,
1405
+ "<|8.04|>": 50767,
1406
+ "<|8.06|>": 50768,
1407
+ "<|8.08|>": 50769,
1408
+ "<|8.10|>": 50770,
1409
+ "<|8.12|>": 50771,
1410
+ "<|8.14|>": 50772,
1411
+ "<|8.16|>": 50773,
1412
+ "<|8.18|>": 50774,
1413
+ "<|8.20|>": 50775,
1414
+ "<|8.22|>": 50776,
1415
+ "<|8.24|>": 50777,
1416
+ "<|8.26|>": 50778,
1417
+ "<|8.28|>": 50779,
1418
+ "<|8.30|>": 50780,
1419
+ "<|8.32|>": 50781,
1420
+ "<|8.34|>": 50782,
1421
+ "<|8.36|>": 50783,
1422
+ "<|8.38|>": 50784,
1423
+ "<|8.40|>": 50785,
1424
+ "<|8.42|>": 50786,
1425
+ "<|8.44|>": 50787,
1426
+ "<|8.46|>": 50788,
1427
+ "<|8.48|>": 50789,
1428
+ "<|8.50|>": 50790,
1429
+ "<|8.52|>": 50791,
1430
+ "<|8.54|>": 50792,
1431
+ "<|8.56|>": 50793,
1432
+ "<|8.58|>": 50794,
1433
+ "<|8.60|>": 50795,
1434
+ "<|8.62|>": 50796,
1435
+ "<|8.64|>": 50797,
1436
+ "<|8.66|>": 50798,
1437
+ "<|8.68|>": 50799,
1438
+ "<|8.70|>": 50800,
1439
+ "<|8.72|>": 50801,
1440
+ "<|8.74|>": 50802,
1441
+ "<|8.76|>": 50803,
1442
+ "<|8.78|>": 50804,
1443
+ "<|8.80|>": 50805,
1444
+ "<|8.82|>": 50806,
1445
+ "<|8.84|>": 50807,
1446
+ "<|8.86|>": 50808,
1447
+ "<|8.88|>": 50809,
1448
+ "<|8.90|>": 50810,
1449
+ "<|8.92|>": 50811,
1450
+ "<|8.94|>": 50812,
1451
+ "<|8.96|>": 50813,
1452
+ "<|8.98|>": 50814,
1453
+ "<|9.00|>": 50815,
1454
+ "<|9.02|>": 50816,
1455
+ "<|9.04|>": 50817,
1456
+ "<|9.06|>": 50818,
1457
+ "<|9.08|>": 50819,
1458
+ "<|9.10|>": 50820,
1459
+ "<|9.12|>": 50821,
1460
+ "<|9.14|>": 50822,
1461
+ "<|9.16|>": 50823,
1462
+ "<|9.18|>": 50824,
1463
+ "<|9.20|>": 50825,
1464
+ "<|9.22|>": 50826,
1465
+ "<|9.24|>": 50827,
1466
+ "<|9.26|>": 50828,
1467
+ "<|9.28|>": 50829,
1468
+ "<|9.30|>": 50830,
1469
+ "<|9.32|>": 50831,
1470
+ "<|9.34|>": 50832,
1471
+ "<|9.36|>": 50833,
1472
+ "<|9.38|>": 50834,
1473
+ "<|9.40|>": 50835,
1474
+ "<|9.42|>": 50836,
1475
+ "<|9.44|>": 50837,
1476
+ "<|9.46|>": 50838,
1477
+ "<|9.48|>": 50839,
1478
+ "<|9.50|>": 50840,
1479
+ "<|9.52|>": 50841,
1480
+ "<|9.54|>": 50842,
1481
+ "<|9.56|>": 50843,
1482
+ "<|9.58|>": 50844,
1483
+ "<|9.60|>": 50845,
1484
+ "<|9.62|>": 50846,
1485
+ "<|9.64|>": 50847,
1486
+ "<|9.66|>": 50848,
1487
+ "<|9.68|>": 50849,
1488
+ "<|9.70|>": 50850,
1489
+ "<|9.72|>": 50851,
1490
+ "<|9.74|>": 50852,
1491
+ "<|9.76|>": 50853,
1492
+ "<|9.78|>": 50854,
1493
+ "<|9.80|>": 50855,
1494
+ "<|9.82|>": 50856,
1495
+ "<|9.84|>": 50857,
1496
+ "<|9.86|>": 50858,
1497
+ "<|9.88|>": 50859,
1498
+ "<|9.90|>": 50860,
1499
+ "<|9.92|>": 50861,
1500
+ "<|9.94|>": 50862,
1501
+ "<|9.96|>": 50863,
1502
+ "<|9.98|>": 50864,
1503
+ "<|af|>": 50327,
1504
+ "<|am|>": 50334,
1505
+ "<|ar|>": 50272,
1506
+ "<|as|>": 50350,
1507
+ "<|az|>": 50304,
1508
+ "<|ba|>": 50355,
1509
+ "<|be|>": 50330,
1510
+ "<|bg|>": 50292,
1511
+ "<|bn|>": 50302,
1512
+ "<|bo|>": 50347,
1513
+ "<|br|>": 50309,
1514
+ "<|bs|>": 50315,
1515
+ "<|ca|>": 50270,
1516
+ "<|cs|>": 50283,
1517
+ "<|cy|>": 50297,
1518
+ "<|da|>": 50285,
1519
+ "<|de|>": 50261,
1520
+ "<|el|>": 50281,
1521
+ "<|endoftext|>": 50257,
1522
+ "<|en|>": 50259,
1523
+ "<|es|>": 50262,
1524
+ "<|et|>": 50307,
1525
+ "<|eu|>": 50310,
1526
+ "<|fa|>": 50300,
1527
+ "<|fi|>": 50277,
1528
+ "<|fo|>": 50338,
1529
+ "<|fr|>": 50265,
1530
+ "<|gl|>": 50319,
1531
+ "<|gu|>": 50333,
1532
+ "<|haw|>": 50352,
1533
+ "<|ha|>": 50354,
1534
+ "<|he|>": 50279,
1535
+ "<|hi|>": 50276,
1536
+ "<|hr|>": 50291,
1537
+ "<|ht|>": 50339,
1538
+ "<|hu|>": 50286,
1539
+ "<|hy|>": 50312,
1540
+ "<|id|>": 50275,
1541
+ "<|is|>": 50311,
1542
+ "<|it|>": 50274,
1543
+ "<|ja|>": 50266,
1544
+ "<|jw|>": 50356,
1545
+ "<|ka|>": 50329,
1546
+ "<|kk|>": 50316,
1547
+ "<|km|>": 50323,
1548
+ "<|kn|>": 50306,
1549
+ "<|ko|>": 50264,
1550
+ "<|la|>": 50294,
1551
+ "<|lb|>": 50345,
1552
+ "<|ln|>": 50353,
1553
+ "<|lo|>": 50336,
1554
+ "<|lt|>": 50293,
1555
+ "<|lv|>": 50301,
1556
+ "<|mg|>": 50349,
1557
+ "<|mi|>": 50295,
1558
+ "<|mk|>": 50308,
1559
+ "<|ml|>": 50296,
1560
+ "<|mn|>": 50314,
1561
+ "<|mr|>": 50320,
1562
+ "<|ms|>": 50282,
1563
+ "<|mt|>": 50343,
1564
+ "<|my|>": 50346,
1565
+ "<|ne|>": 50313,
1566
+ "<|nl|>": 50271,
1567
+ "<|nn|>": 50342,
1568
+ "<|nospeech|>": 50363,
1569
+ "<|notimestamps|>": 50364,
1570
+ "<|no|>": 50288,
1571
+ "<|oc|>": 50328,
1572
+ "<|pa|>": 50321,
1573
+ "<|pl|>": 50269,
1574
+ "<|ps|>": 50340,
1575
+ "<|pt|>": 50267,
1576
+ "<|ro|>": 50284,
1577
+ "<|ru|>": 50263,
1578
+ "<|sa|>": 50344,
1579
+ "<|sd|>": 50332,
1580
+ "<|si|>": 50322,
1581
+ "<|sk|>": 50298,
1582
+ "<|sl|>": 50305,
1583
+ "<|sn|>": 50324,
1584
+ "<|so|>": 50326,
1585
+ "<|sq|>": 50317,
1586
+ "<|sr|>": 50303,
1587
+ "<|startoflm|>": 50361,
1588
+ "<|startofprev|>": 50362,
1589
+ "<|startoftranscript|>": 50258,
1590
+ "<|su|>": 50357,
1591
+ "<|sv|>": 50273,
1592
+ "<|sw|>": 50318,
1593
+ "<|ta|>": 50287,
1594
+ "<|te|>": 50299,
1595
+ "<|tg|>": 50331,
1596
+ "<|th|>": 50289,
1597
+ "<|tk|>": 50341,
1598
+ "<|tl|>": 50348,
1599
+ "<|transcribe|>": 50360,
1600
+ "<|translate|>": 50359,
1601
+ "<|tr|>": 50268,
1602
+ "<|tt|>": 50351,
1603
+ "<|uk|>": 50280,
1604
+ "<|ur|>": 50290,
1605
+ "<|uz|>": 50337,
1606
+ "<|vi|>": 50278,
1607
+ "<|yi|>": 50335,
1608
+ "<|yo|>": 50325,
1609
+ "<|yue|>": 50358,
1610
+ "<|zh|>": 50260
1611
+ }
nb-distil-large-init/config.json ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "gelu",
5
+ "alignment_heads": [
6
+ [
7
+ 7,
8
+ 0
9
+ ],
10
+ [
11
+ 10,
12
+ 17
13
+ ],
14
+ [
15
+ 12,
16
+ 18
17
+ ],
18
+ [
19
+ 13,
20
+ 12
21
+ ],
22
+ [
23
+ 16,
24
+ 1
25
+ ],
26
+ [
27
+ 17,
28
+ 14
29
+ ],
30
+ [
31
+ 19,
32
+ 11
33
+ ],
34
+ [
35
+ 21,
36
+ 4
37
+ ],
38
+ [
39
+ 24,
40
+ 1
41
+ ],
42
+ [
43
+ 25,
44
+ 6
45
+ ]
46
+ ],
47
+ "apply_spec_augment": false,
48
+ "architectures": [
49
+ "WhisperForConditionalGeneration"
50
+ ],
51
+ "attention_dropout": 0,
52
+ "begin_suppress_tokens": [
53
+ 220,
54
+ 50257
55
+ ],
56
+ "bos_token_id": 50257,
57
+ "classifier_proj_size": 256,
58
+ "d_model": 1280,
59
+ "decoder_attention_heads": 20,
60
+ "decoder_ffn_dim": 5120,
61
+ "decoder_layerdrop": 0,
62
+ "decoder_layers": 2,
63
+ "decoder_start_token_id": 50258,
64
+ "dropout": 0,
65
+ "encoder_attention_heads": 20,
66
+ "encoder_ffn_dim": 5120,
67
+ "encoder_layerdrop": 0,
68
+ "encoder_layers": 32,
69
+ "eos_token_id": 50257,
70
+ "init_std": 0.02,
71
+ "is_encoder_decoder": true,
72
+ "lang_ids": [
73
+ 50259,
74
+ 50260,
75
+ 50261,
76
+ 50262,
77
+ 50263,
78
+ 50264,
79
+ 50265,
80
+ 50266,
81
+ 50267,
82
+ 50268,
83
+ 50269,
84
+ 50270,
85
+ 50271,
86
+ 50272,
87
+ 50273,
88
+ 50274,
89
+ 50275,
90
+ 50276,
91
+ 50277,
92
+ 50278,
93
+ 50279,
94
+ 50280,
95
+ 50281,
96
+ 50282,
97
+ 50283,
98
+ 50284,
99
+ 50285,
100
+ 50286,
101
+ 50287,
102
+ 50288,
103
+ 50289,
104
+ 50290,
105
+ 50291,
106
+ 50292,
107
+ 50293,
108
+ 50294,
109
+ 50295,
110
+ 50296,
111
+ 50297,
112
+ 50298,
113
+ 50299,
114
+ 50300,
115
+ 50301,
116
+ 50302,
117
+ 50303,
118
+ 50304,
119
+ 50305,
120
+ 50306,
121
+ 50307,
122
+ 50308,
123
+ 50309,
124
+ 50310,
125
+ 50311,
126
+ 50312,
127
+ 50313,
128
+ 50314,
129
+ 50315,
130
+ 50316,
131
+ 50317,
132
+ 50318,
133
+ 50319,
134
+ 50320,
135
+ 50321,
136
+ 50322,
137
+ 50323,
138
+ 50324,
139
+ 50325,
140
+ 50326,
141
+ 50327,
142
+ 50328,
143
+ 50329,
144
+ 50330,
145
+ 50331,
146
+ 50332,
147
+ 50333,
148
+ 50334,
149
+ 50335,
150
+ 50336,
151
+ 50337,
152
+ 50338,
153
+ 50339,
154
+ 50340,
155
+ 50341,
156
+ 50342,
157
+ 50343,
158
+ 50344,
159
+ 50345,
160
+ 50346,
161
+ 50347,
162
+ 50348,
163
+ 50349,
164
+ 50350,
165
+ 50351,
166
+ 50352,
167
+ 50353,
168
+ 50354,
169
+ 50355,
170
+ 50356,
171
+ 50357,
172
+ 50358
173
+ ],
174
+ "mask_feature_length": 10,
175
+ "mask_feature_min_masks": 0,
176
+ "mask_feature_prob": 0,
177
+ "mask_time_length": 10,
178
+ "mask_time_min_masks": 2,
179
+ "mask_time_prob": 0.05,
180
+ "max_length": 448,
181
+ "max_source_positions": 1500,
182
+ "max_target_positions": 448,
183
+ "median_filter_width": 7,
184
+ "model_type": "whisper",
185
+ "num_hidden_layers": 32,
186
+ "num_mel_bins": 128,
187
+ "pad_token_id": 50256,
188
+ "scale_embedding": false,
189
+ "suppress_ids": [
190
+ 1,
191
+ 2,
192
+ 7,
193
+ 8,
194
+ 9,
195
+ 10,
196
+ 14,
197
+ 25,
198
+ 26,
199
+ 27,
200
+ 28,
201
+ 29,
202
+ 31,
203
+ 58,
204
+ 59,
205
+ 60,
206
+ 61,
207
+ 62,
208
+ 63,
209
+ 90,
210
+ 91,
211
+ 92,
212
+ 93,
213
+ 359,
214
+ 503,
215
+ 522,
216
+ 542,
217
+ 873,
218
+ 893,
219
+ 902,
220
+ 918,
221
+ 922,
222
+ 931,
223
+ 1350,
224
+ 1853,
225
+ 1982,
226
+ 2460,
227
+ 2627,
228
+ 3246,
229
+ 3253,
230
+ 3268,
231
+ 3536,
232
+ 3846,
233
+ 3961,
234
+ 4183,
235
+ 4667,
236
+ 6585,
237
+ 6647,
238
+ 7273,
239
+ 9061,
240
+ 9383,
241
+ 10428,
242
+ 10929,
243
+ 11938,
244
+ 12033,
245
+ 12331,
246
+ 12562,
247
+ 13793,
248
+ 14157,
249
+ 14635,
250
+ 15265,
251
+ 15618,
252
+ 16553,
253
+ 16604,
254
+ 18362,
255
+ 18956,
256
+ 20075,
257
+ 21675,
258
+ 22520,
259
+ 26130,
260
+ 26161,
261
+ 26435,
262
+ 28279,
263
+ 29464,
264
+ 31650,
265
+ 32302,
266
+ 32470,
267
+ 36865,
268
+ 42863,
269
+ 47425,
270
+ 49870,
271
+ 50254,
272
+ 50258,
273
+ 50359,
274
+ 50360,
275
+ 50361,
276
+ 50362,
277
+ 50363
278
+ ],
279
+ "suppress_ids_begin": [
280
+ 220,
281
+ 50257
282
+ ],
283
+ "torch_dtype": "float32",
284
+ "transformers_version": "4.46.2",
285
+ "use_cache": true,
286
+ "use_weighted_layer_sum": false,
287
+ "vocab_size": 51866
288
+ }
nb-distil-large-init/flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60f608eb7887b643bfb0d6b11d3ad8564c648c296a90c1e558aa61075b1f2839
3
+ size 1512831199
nb-distil-large-init/generation_config.json ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alignment_heads": [
3
+ [
4
+ 7,
5
+ 0
6
+ ],
7
+ [
8
+ 10,
9
+ 17
10
+ ],
11
+ [
12
+ 12,
13
+ 18
14
+ ],
15
+ [
16
+ 13,
17
+ 12
18
+ ],
19
+ [
20
+ 16,
21
+ 1
22
+ ],
23
+ [
24
+ 17,
25
+ 14
26
+ ],
27
+ [
28
+ 19,
29
+ 11
30
+ ],
31
+ [
32
+ 21,
33
+ 4
34
+ ],
35
+ [
36
+ 24,
37
+ 1
38
+ ],
39
+ [
40
+ 25,
41
+ 6
42
+ ]
43
+ ],
44
+ "begin_suppress_tokens": [
45
+ 220,
46
+ 50257
47
+ ],
48
+ "bos_token_id": 50257,
49
+ "decoder_start_token_id": 50258,
50
+ "eos_token_id": 50257,
51
+ "forced_decoder_ids": [
52
+ [
53
+ 1,
54
+ 50288
55
+ ],
56
+ [
57
+ 2,
58
+ 50360
59
+ ],
60
+ [
61
+ 3,
62
+ 50364
63
+ ]
64
+ ],
65
+ "is_multilingual": true,
66
+ "lang_to_id": {
67
+ "<|af|>": 50327,
68
+ "<|am|>": 50334,
69
+ "<|ar|>": 50272,
70
+ "<|as|>": 50350,
71
+ "<|az|>": 50304,
72
+ "<|ba|>": 50355,
73
+ "<|be|>": 50330,
74
+ "<|bg|>": 50292,
75
+ "<|bn|>": 50302,
76
+ "<|bo|>": 50347,
77
+ "<|br|>": 50309,
78
+ "<|bs|>": 50315,
79
+ "<|ca|>": 50270,
80
+ "<|cs|>": 50283,
81
+ "<|cy|>": 50297,
82
+ "<|da|>": 50285,
83
+ "<|de|>": 50261,
84
+ "<|el|>": 50281,
85
+ "<|en|>": 50259,
86
+ "<|es|>": 50262,
87
+ "<|et|>": 50307,
88
+ "<|eu|>": 50310,
89
+ "<|fa|>": 50300,
90
+ "<|fi|>": 50277,
91
+ "<|fo|>": 50338,
92
+ "<|fr|>": 50265,
93
+ "<|gl|>": 50319,
94
+ "<|gu|>": 50333,
95
+ "<|haw|>": 50352,
96
+ "<|ha|>": 50354,
97
+ "<|he|>": 50279,
98
+ "<|hi|>": 50276,
99
+ "<|hr|>": 50291,
100
+ "<|ht|>": 50339,
101
+ "<|hu|>": 50286,
102
+ "<|hy|>": 50312,
103
+ "<|id|>": 50275,
104
+ "<|is|>": 50311,
105
+ "<|it|>": 50274,
106
+ "<|ja|>": 50266,
107
+ "<|jw|>": 50356,
108
+ "<|ka|>": 50329,
109
+ "<|kk|>": 50316,
110
+ "<|km|>": 50323,
111
+ "<|kn|>": 50306,
112
+ "<|ko|>": 50264,
113
+ "<|la|>": 50294,
114
+ "<|lb|>": 50345,
115
+ "<|ln|>": 50353,
116
+ "<|lo|>": 50336,
117
+ "<|lt|>": 50293,
118
+ "<|lv|>": 50301,
119
+ "<|mg|>": 50349,
120
+ "<|mi|>": 50295,
121
+ "<|mk|>": 50308,
122
+ "<|ml|>": 50296,
123
+ "<|mn|>": 50314,
124
+ "<|mr|>": 50320,
125
+ "<|ms|>": 50282,
126
+ "<|mt|>": 50343,
127
+ "<|my|>": 50346,
128
+ "<|ne|>": 50313,
129
+ "<|nl|>": 50271,
130
+ "<|nn|>": 50342,
131
+ "<|no|>": 50288,
132
+ "<|oc|>": 50328,
133
+ "<|pa|>": 50321,
134
+ "<|pl|>": 50269,
135
+ "<|ps|>": 50340,
136
+ "<|pt|>": 50267,
137
+ "<|ro|>": 50284,
138
+ "<|ru|>": 50263,
139
+ "<|sa|>": 50344,
140
+ "<|sd|>": 50332,
141
+ "<|si|>": 50322,
142
+ "<|sk|>": 50298,
143
+ "<|sl|>": 50305,
144
+ "<|sn|>": 50324,
145
+ "<|so|>": 50326,
146
+ "<|sq|>": 50317,
147
+ "<|sr|>": 50303,
148
+ "<|su|>": 50357,
149
+ "<|sv|>": 50273,
150
+ "<|sw|>": 50318,
151
+ "<|ta|>": 50287,
152
+ "<|te|>": 50299,
153
+ "<|tg|>": 50331,
154
+ "<|th|>": 50289,
155
+ "<|tk|>": 50341,
156
+ "<|tl|>": 50348,
157
+ "<|tr|>": 50268,
158
+ "<|tt|>": 50351,
159
+ "<|uk|>": 50280,
160
+ "<|ur|>": 50290,
161
+ "<|uz|>": 50337,
162
+ "<|vi|>": 50278,
163
+ "<|yi|>": 50335,
164
+ "<|yo|>": 50325,
165
+ "<|yue|>": 50358,
166
+ "<|zh|>": 50260
167
+ },
168
+ "language": "<|no|>",
169
+ "max_initial_timestamp_index": 1,
170
+ "max_length": 448,
171
+ "no_timestamps_token_id": 50364,
172
+ "pad_token_id": 50257,
173
+ "return_timestamps": false,
174
+ "suppress_tokens": [
175
+ 1,
176
+ 2,
177
+ 7,
178
+ 8,
179
+ 9,
180
+ 10,
181
+ 14,
182
+ 25,
183
+ 26,
184
+ 27,
185
+ 28,
186
+ 29,
187
+ 31,
188
+ 58,
189
+ 59,
190
+ 60,
191
+ 61,
192
+ 62,
193
+ 63,
194
+ 90,
195
+ 91,
196
+ 92,
197
+ 93,
198
+ 359,
199
+ 503,
200
+ 522,
201
+ 542,
202
+ 873,
203
+ 893,
204
+ 902,
205
+ 918,
206
+ 922,
207
+ 931,
208
+ 1350,
209
+ 1853,
210
+ 1982,
211
+ 2460,
212
+ 2627,
213
+ 3246,
214
+ 3253,
215
+ 3268,
216
+ 3536,
217
+ 3846,
218
+ 3961,
219
+ 4183,
220
+ 4667,
221
+ 6585,
222
+ 6647,
223
+ 7273,
224
+ 9061,
225
+ 9383,
226
+ 10428,
227
+ 10929,
228
+ 11938,
229
+ 12033,
230
+ 12331,
231
+ 12562,
232
+ 13793,
233
+ 14157,
234
+ 14635,
235
+ 15265,
236
+ 15618,
237
+ 16553,
238
+ 16604,
239
+ 18362,
240
+ 18956,
241
+ 20075,
242
+ 21675,
243
+ 22520,
244
+ 26130,
245
+ 26161,
246
+ 26435,
247
+ 28279,
248
+ 29464,
249
+ 31650,
250
+ 32302,
251
+ 32470,
252
+ 36865,
253
+ 42863,
254
+ 47425,
255
+ 49870,
256
+ 50254,
257
+ 50258,
258
+ 50359,
259
+ 50360,
260
+ 50361,
261
+ 50362,
262
+ 50363
263
+ ],
264
+ "task": "transcribe",
265
+ "task_to_id": {
266
+ "transcribe": 50360,
267
+ "translate": 50359
268
+ },
269
+ "transformers_version": "4.46.2"
270
+ }
nb-distil-large-init/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
nb-distil-large-init/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 128,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
nb-distil-large-init/special_tokens_map.json ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|startoftranscript|>",
4
+ "<|en|>",
5
+ "<|zh|>",
6
+ "<|de|>",
7
+ "<|es|>",
8
+ "<|ru|>",
9
+ "<|ko|>",
10
+ "<|fr|>",
11
+ "<|ja|>",
12
+ "<|pt|>",
13
+ "<|tr|>",
14
+ "<|pl|>",
15
+ "<|ca|>",
16
+ "<|nl|>",
17
+ "<|ar|>",
18
+ "<|sv|>",
19
+ "<|it|>",
20
+ "<|id|>",
21
+ "<|hi|>",
22
+ "<|fi|>",
23
+ "<|vi|>",
24
+ "<|he|>",
25
+ "<|uk|>",
26
+ "<|el|>",
27
+ "<|ms|>",
28
+ "<|cs|>",
29
+ "<|ro|>",
30
+ "<|da|>",
31
+ "<|hu|>",
32
+ "<|ta|>",
33
+ "<|no|>",
34
+ "<|th|>",
35
+ "<|ur|>",
36
+ "<|hr|>",
37
+ "<|bg|>",
38
+ "<|lt|>",
39
+ "<|la|>",
40
+ "<|mi|>",
41
+ "<|ml|>",
42
+ "<|cy|>",
43
+ "<|sk|>",
44
+ "<|te|>",
45
+ "<|fa|>",
46
+ "<|lv|>",
47
+ "<|bn|>",
48
+ "<|sr|>",
49
+ "<|az|>",
50
+ "<|sl|>",
51
+ "<|kn|>",
52
+ "<|et|>",
53
+ "<|mk|>",
54
+ "<|br|>",
55
+ "<|eu|>",
56
+ "<|is|>",
57
+ "<|hy|>",
58
+ "<|ne|>",
59
+ "<|mn|>",
60
+ "<|bs|>",
61
+ "<|kk|>",
62
+ "<|sq|>",
63
+ "<|sw|>",
64
+ "<|gl|>",
65
+ "<|mr|>",
66
+ "<|pa|>",
67
+ "<|si|>",
68
+ "<|km|>",
69
+ "<|sn|>",
70
+ "<|yo|>",
71
+ "<|so|>",
72
+ "<|af|>",
73
+ "<|oc|>",
74
+ "<|ka|>",
75
+ "<|be|>",
76
+ "<|tg|>",
77
+ "<|sd|>",
78
+ "<|gu|>",
79
+ "<|am|>",
80
+ "<|yi|>",
81
+ "<|lo|>",
82
+ "<|uz|>",
83
+ "<|fo|>",
84
+ "<|ht|>",
85
+ "<|ps|>",
86
+ "<|tk|>",
87
+ "<|nn|>",
88
+ "<|mt|>",
89
+ "<|sa|>",
90
+ "<|lb|>",
91
+ "<|my|>",
92
+ "<|bo|>",
93
+ "<|tl|>",
94
+ "<|mg|>",
95
+ "<|as|>",
96
+ "<|tt|>",
97
+ "<|haw|>",
98
+ "<|ln|>",
99
+ "<|ha|>",
100
+ "<|ba|>",
101
+ "<|jw|>",
102
+ "<|su|>",
103
+ "<|yue|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nospeech|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": false,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": {
126
+ "content": "<|endoftext|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false
131
+ },
132
+ "unk_token": {
133
+ "content": "<|endoftext|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false
138
+ }
139
+ }
nb-distil-large-init/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
nb-distil-large-init/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
run_distillation.py ADDED
@@ -0,0 +1,2172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
18
+ """
19
+ # You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.
20
+
21
+ import logging
22
+ import os
23
+ import re
24
+ import shutil
25
+ import string
26
+ import sys
27
+ import time
28
+ from dataclasses import dataclass, field
29
+ from functools import partial
30
+ from pathlib import Path
31
+ from typing import Any, Callable, Dict, List, Optional, Union
32
+
33
+ import datasets
34
+ import evaluate
35
+ import flax
36
+ import jax
37
+ import jax.numpy as jnp
38
+ import numpy as np
39
+ import optax
40
+ import torch
41
+ import transformers
42
+ from datasets import (
43
+ DatasetDict,
44
+ IterableDataset,
45
+ IterableDatasetDict,
46
+ concatenate_datasets,
47
+ interleave_datasets,
48
+ load_dataset,
49
+ )
50
+ from datasets.distributed import split_dataset_by_node
51
+ from flax import jax_utils, traverse_util
52
+ from flax.jax_utils import pad_shard_unpad, unreplicate
53
+ from flax.serialization import from_bytes, to_bytes
54
+ from flax.training import train_state
55
+ from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
56
+ from huggingface_hub import Repository, create_repo
57
+ from jax.experimental.compilation_cache import compilation_cache as cc
58
+ from optax._src import linear_algebra
59
+ from torch.utils.data import DataLoader
60
+ from torchdata.datapipes.iter import IterableWrapper
61
+ from tqdm import tqdm
62
+ from transformers import (
63
+ AddedToken,
64
+ HfArgumentParser,
65
+ Seq2SeqTrainingArguments,
66
+ WhisperConfig,
67
+ WhisperFeatureExtractor,
68
+ WhisperProcessor,
69
+ WhisperTokenizerFast,
70
+ is_tensorboard_available,
71
+ is_wandb_available,
72
+ set_seed,
73
+ )
74
+ from transformers.file_utils import get_full_repo_name
75
+ from transformers.modeling_flax_outputs import FlaxBaseModelOutput
76
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer,EnglishTextNormalizer
77
+ from transformers.utils import check_min_version, send_example_telemetry
78
+ from transformers.utils.versions import require_version
79
+
80
+ from distil_whisper import FlaxWhisperForConditionalGeneration
81
+
82
+
83
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
84
+ check_min_version("4.27.0.dev0")
85
+
86
+ require_version(
87
+ "datasets>=1.18.0",
88
+ "To fix: pip install -r examples/flax/speech-recogintion/requirements.txt",
89
+ )
90
+
91
+ logger = logging.getLogger(__name__)
92
+
93
+
94
+ @flax.struct.dataclass
95
+ class ModelArguments:
96
+ """
97
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
98
+ """
99
+
100
+ model_name_or_path: str = field(
101
+ metadata={"help": ("Path to pretrained student model or model identifier from huggingface.co/models")}
102
+ )
103
+ teacher_model_name_or_path: str = field(
104
+ metadata={"help": ("Path to pretrained teacher model or model identifier from huggingface.co/models")}
105
+ )
106
+ config_name: Optional[str] = field(
107
+ default=None,
108
+ metadata={"help": "Pretrained config name or path if not the same as model_name"},
109
+ )
110
+ tokenizer_name: Optional[str] = field(
111
+ default=None,
112
+ metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
113
+ )
114
+ feature_extractor_name: Optional[str] = field(
115
+ default=None,
116
+ metadata={"help": "feature extractor name or path if not the same as model_name"},
117
+ )
118
+ cache_dir: Optional[str] = field(
119
+ default=None,
120
+ metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")},
121
+ )
122
+ use_fast_tokenizer: bool = field(
123
+ default=True,
124
+ metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")},
125
+ )
126
+ model_revision: str = field(
127
+ default="main",
128
+ metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")},
129
+ )
130
+ subfolder: str = field(
131
+ default="",
132
+ metadata={
133
+ "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
134
+ "specify the folder name here."
135
+ },
136
+ )
137
+ use_auth_token: bool = field(
138
+ default=False,
139
+ metadata={
140
+ "help": (
141
+ "Will use the token generated when running `transformers-cli login`"
142
+ " (necessary to use this script with private models)."
143
+ )
144
+ },
145
+ )
146
+ dtype: Optional[str] = field(
147
+ default="float32",
148
+ metadata={
149
+ "help": (
150
+ "Floating-point format in which the model weights should be initialized"
151
+ " and trained. Choose one of `[float32, float16, bfloat16]`."
152
+ )
153
+ },
154
+ )
155
+ load_with_scan_weights: bool = field(
156
+ default=False,
157
+ metadata={
158
+ "help": "Whether the pre-trained checkpoint has its weights stored in scan format. Set to True for scanned "
159
+ "weights, defaults to False for non-scan (unrolled) weights."
160
+ },
161
+ )
162
+ activation_dropout: float = field(
163
+ default=0.0,
164
+ metadata={"help": "The dropout ratio for activations inside the fully connected layer."},
165
+ )
166
+ attention_dropout: float = field(
167
+ default=0.0,
168
+ metadata={"help": "The dropout ratio for the attention probabilities."},
169
+ )
170
+ dropout: float = field(
171
+ default=0.0,
172
+ metadata={
173
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
174
+ },
175
+ )
176
+
177
+
178
+ @flax.struct.dataclass
179
+ class DataTrainingArguments:
180
+ """
181
+ Arguments pertaining to what data we are going to input our model for training and eval.
182
+ """
183
+
184
+ train_dataset_name: str = field(
185
+ default=None,
186
+ metadata={
187
+ "help": "The name of the training dataset to use (via the datasets library). Load and combine "
188
+ "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
189
+ " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
190
+ },
191
+ )
192
+ train_dataset_config_name: Optional[str] = field(
193
+ default=None,
194
+ metadata={
195
+ "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
196
+ "multiple datasets by separating dataset configs by a '+' symbol."
197
+ },
198
+ )
199
+ train_dataset_samples: str = field(
200
+ default=None,
201
+ metadata={
202
+ "help": "Number of samples in the training data. Load and combine "
203
+ "multiple datasets by separating dataset samples by a '+' symbol."
204
+ },
205
+ )
206
+ eval_dataset_name: str = field(
207
+ default=None,
208
+ metadata={
209
+ "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
210
+ },
211
+ )
212
+ eval_dataset_config_name: Optional[str] = field(
213
+ default=None,
214
+ metadata={
215
+ "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
216
+ },
217
+ )
218
+ dataset_cache_dir: Optional[str] = field(
219
+ default=None,
220
+ metadata={"help": "Path to cache directory for saving and loading datasets"},
221
+ )
222
+ overwrite_cache: bool = field(
223
+ default=False,
224
+ metadata={"help": "Overwrite the cached training and evaluation sets"},
225
+ )
226
+ preprocessing_num_workers: Optional[int] = field(
227
+ default=None,
228
+ metadata={"help": "The number of processes to use for the preprocessing."},
229
+ )
230
+ max_train_samples: Optional[int] = field(
231
+ default=None,
232
+ metadata={
233
+ "help": (
234
+ "For debugging purposes or quicker training, truncate the number of"
235
+ " training examples to this value if set."
236
+ )
237
+ },
238
+ )
239
+ max_eval_samples: Optional[int] = field(
240
+ default=None,
241
+ metadata={
242
+ "help": (
243
+ "For debugging purposes or quicker training, truncate the number of"
244
+ " evaluation examples to this value if set."
245
+ )
246
+ },
247
+ )
248
+ audio_column_name: str = field(
249
+ default="audio",
250
+ metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")},
251
+ )
252
+ train_text_column_name: str = field(
253
+ default="whisper_transcript",
254
+ metadata={
255
+ "help": (
256
+ "The name of the dataset column containing the text data. Defaults to"
257
+ " 'whisper_transcript'which is the pseudo-labelled Whisper"
258
+ " transcription data."
259
+ )
260
+ },
261
+ )
262
+ eval_text_column_name: str = field(
263
+ default="text",
264
+ metadata={
265
+ "help": (
266
+ "The name of the dataset column containing the text data. Defaults to"
267
+ " 'text', which is the original text data"
268
+ )
269
+ },
270
+ )
271
+ max_duration_in_seconds: float = field(
272
+ default=30.0,
273
+ metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")},
274
+ )
275
+ min_duration_in_seconds: float = field(
276
+ default=0.0,
277
+ metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")},
278
+ )
279
+ max_label_length: int = field(
280
+ default=128,
281
+ metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
282
+ )
283
+ pad_target_to_multiple_of: Optional[int] = field(
284
+ default=None,
285
+ metadata={
286
+ "help": (
287
+ "If set will pad the target sequence to a multiple of the provided"
288
+ " value. This is important to avoid triggering recompilations on TPU."
289
+ " If unspecified, will default to padding the targets to max length."
290
+ )
291
+ },
292
+ )
293
+ preprocessing_only: bool = field(
294
+ default=False,
295
+ metadata={
296
+ "help": (
297
+ "Whether to only do data preprocessing and skip training. This is"
298
+ " especially useful when data preprocessing errors out in distributed"
299
+ " training due to timeout. In this case, one should run the"
300
+ " preprocessing in a non-distributed setup with"
301
+ " `preprocessing_only=True` so that the cached datasets can"
302
+ " consequently be loaded in distributed training"
303
+ )
304
+ },
305
+ )
306
+ train_split_name: str = field(
307
+ default="train",
308
+ metadata={
309
+ "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
310
+ },
311
+ )
312
+ eval_split_name: str = field(
313
+ default="validation",
314
+ metadata={
315
+ "help": (
316
+ "The name of the evaluation data set split to use (via the datasets"
317
+ " library). Defaults to 'validation'"
318
+ )
319
+ },
320
+ )
321
+ wandb_project: str = field(
322
+ default="distil-whisper",
323
+ metadata={"help": "The name of the wandb project."},
324
+ )
325
+ wandb_name: str = field(
326
+ default=None,
327
+ metadata={"help": "The name of the wandb run."},
328
+ )
329
+ wandb_job_type: str = field(
330
+ default="distil-whisper",
331
+ metadata={"help": "The name of the wandb job type."},
332
+ )
333
+ wandb_dir: str = field(
334
+ default=None,
335
+ metadata={"help": "The absolute path to save the wandb logs."},
336
+ )
337
+ save_code_to_wandb: bool = field(
338
+ default=False,
339
+ metadata={
340
+ "help": (
341
+ "Whether to save main script to wandb. This is valuable for improving"
342
+ " experiment reproducibility and to diff code across experiments in"
343
+ " the UI."
344
+ )
345
+ },
346
+ )
347
+ streaming: bool = field(
348
+ default=True,
349
+ metadata={"help": "Whether to use Datasets' streaming mode to load and the data."},
350
+ )
351
+ wer_threshold: float = field(
352
+ default=None,
353
+ metadata={
354
+ "help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` "
355
+ "WER with the normalised transcriptions."
356
+ },
357
+ )
358
+ prefetch_size: int = field(
359
+ default=0,
360
+ metadata={"help": "Number of samples to pre-fetch if using an iterable dataset."},
361
+ )
362
+ timestamp_probability: float = field(
363
+ default=0.5, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
364
+ )
365
+ return_timestamps: bool = field(
366
+ default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
367
+ )
368
+ round_timestamps: bool = field(
369
+ default=False,
370
+ metadata={
371
+ "help": "Whether or not to round the timestamp tokens to the nearest tenth of a second."
372
+ "By default, Whisper predicts timestamps to the nearest hundredth of a second."
373
+ "Reducing the timestamp precision to one tenth of a second simplifies the timestamp"
374
+ "prediction task, at the expense of timestamp granularity."
375
+ },
376
+ )
377
+
378
+
379
+ @dataclass
380
+ class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments):
381
+ use_scan: Optional[bool] = field(
382
+ default=True,
383
+ metadata={
384
+ "help": (
385
+ "Whether or not to use `scan_with_axes` over the encoder and decoder blocks. Using scan results "
386
+ "in faster compile times and more efficient memory use during training, since all of the layers "
387
+ "in the encoder/decoder are stacked, and we perform a lax.scan over the stacked block to index "
388
+ "each layer. However, it results in slower inference time due to the overhead of stacking the "
389
+ "layers this way. Thus, we **always** default to disabling scan for the inference step."
390
+ )
391
+ },
392
+ )
393
+ freeze_encoder: Optional[bool] = field(
394
+ default=False,
395
+ metadata={
396
+ "help": (
397
+ "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
398
+ "copied from the teacher model."
399
+ )
400
+ },
401
+ )
402
+ temperature: Optional[float] = field(
403
+ default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
404
+ )
405
+ kl_weight: Optional[float] = field(
406
+ default=1.0,
407
+ metadata={
408
+ "help": (
409
+ "Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
410
+ "computed between the teacher-student hidden states and attentions."
411
+ )
412
+ },
413
+ )
414
+ mse_weight: Optional[float] = field(
415
+ default=0.0,
416
+ metadata={
417
+ "help": (
418
+ "Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
419
+ "computed between the teacher-student hidden states and attentions."
420
+ )
421
+ },
422
+ )
423
+ precision: Optional[str] = field(
424
+ default="half_mixed",
425
+ metadata={
426
+ "help": (
427
+ "Precision with which run training, Can be one of `full`, `half_mixed` or `full_mixed`, the latter two"
428
+ "of which enable *mixed-precision* training. **Note that this only specifies the dtype of the computation "
429
+ "and optimizer state. It does not influence the dtype of model parameters.** An explanation of the three "
430
+ "settings is provided below:"
431
+ " 1. Full precision: forward pass, backward pass and optimiser states all in float32."
432
+ " 2. Half mixed precision: forward pass in bfloat16, backward pass and optimiser states in float32. This "
433
+ " corresponds to setting the dtype argument to bfloat16 when instantiating the model."
434
+ " 3. Full mixed precision: forward pass, backward pass and optimiser states all in bfloat16. The dtype "
435
+ " argument is set to bfloat16 for the forward pass, and the gradients computed with respect to the bfloat16 "
436
+ " parameters in the backward pass (giving bfloat16 gradients). The new optimiser states and parameter "
437
+ " updates are computed in float32 by upcasting the bfloat16 gradients and optimiser states to float32 "
438
+ " prior to the optimiser update step. The optimiser states are returned in float32 (but not saved to "
439
+ " memory) and then downcasted to bfloat16 (saved to memory) for the subsequent train step."
440
+ "For further details, refer to https://github.com/deepmind/optax/discussions/336"
441
+ )
442
+ },
443
+ )
444
+ compilation_cache: Optional[bool] = field(
445
+ default=False,
446
+ metadata={
447
+ "help": (
448
+ "Whether to enable the JAX (experimental) compilation cache. The compilation step is *cached* the "
449
+ "first time it is run. Successive compilation steps for the same function utilise the cache to reduce"
450
+ "the compilation time."
451
+ )
452
+ },
453
+ )
454
+ save_train_state: Optional[bool] = field(
455
+ default=False,
456
+ metadata={
457
+ "help": "Whether or not to save the Flax Train State on each `save_steps` steps. Required if you intend"
458
+ "to resume training from partial training runs. If False, only the model weights will be saved."
459
+ "If True, both the model weights and Flax Train state will be saved."
460
+ },
461
+ )
462
+
463
+
464
+ def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
465
+ """
466
+ Shift label ids one token to the right.
467
+ """
468
+ shifted_label_ids = np.zeros_like(label_ids)
469
+ shifted_label_ids[:, 1:] = label_ids[:, :-1]
470
+ shifted_label_ids[:, 0] = decoder_start_token_id
471
+
472
+ return shifted_label_ids
473
+
474
+
475
+ @flax.struct.dataclass
476
+ class FlaxDataCollatorSpeechSeq2SeqWithPadding:
477
+ """
478
+ Data collator that will dynamically pad the inputs received.
479
+ Args:
480
+ processor ([`Wav2Vec2Processor`])
481
+ The processor used for proccessing the data.
482
+ decoder_start_token_id (:obj: `int`)
483
+ The start-of-sequence token id of the decoder.
484
+ decoder_prev_token_id (:obj: `int`)
485
+ The start-of-prompt token id of the decoder
486
+ input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
487
+ Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
488
+ among:
489
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
490
+ sequence if provided).
491
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
492
+ maximum acceptable input length for the model if that argument is not provided.
493
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
494
+ different lengths).
495
+ target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
496
+ Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
497
+ See above for details.
498
+ max_target_length (:obj:`int`, `optional`):
499
+ Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
500
+ """
501
+
502
+ processor: Any
503
+ decoder_start_token_id: int
504
+ decoder_prev_token_id: int
505
+ input_padding: Union[bool, str] = "max_length"
506
+ target_padding: Union[bool, str] = "max_length"
507
+ max_target_length: Optional[int] = None
508
+
509
+ def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
510
+ # split inputs and labels since they have to be of different lengths and need
511
+ # different padding methods
512
+ model_input_name = self.processor.model_input_names[0]
513
+
514
+ # dataloader returns a list of features which we convert to a dict
515
+ input_features = {model_input_name: [feature[model_input_name] for feature in features]}
516
+ label_features = {"input_ids": [feature["labels"] for feature in features]}
517
+
518
+ # reformat list to dict and set to pytorch format
519
+ batch = self.processor.feature_extractor.pad(
520
+ input_features,
521
+ padding=self.input_padding,
522
+ return_tensors="np",
523
+ )
524
+
525
+ labels_batch = self.processor.tokenizer.pad(
526
+ label_features,
527
+ max_length=self.max_target_length,
528
+ padding=self.target_padding,
529
+ return_tensors="np",
530
+ )
531
+
532
+ # if bos token is appended in previous tokenization step,
533
+ # cut bos token here as it's append later anyways
534
+ labels = labels_batch["input_ids"]
535
+ if set(np.unique(labels[:, 0])).issubset({self.decoder_start_token_id, self.decoder_prev_token_id}):
536
+ decoder_input_ids = labels[:, :-1]
537
+ labels = labels[:, 1:]
538
+ labels_batch.attention_mask = labels_batch.attention_mask[:, 1:]
539
+ else:
540
+ decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id)
541
+
542
+ # replace padding with -100 to ignore correctly when computing the loss
543
+ labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1))
544
+ labels = labels.filled(fill_value=-100)
545
+
546
+ # replace initial prompt tokens with -100 to ignore correctly when computing the loss
547
+ bos_index = np.argmax(labels == self.decoder_start_token_id, axis=1)
548
+ prompt_mask = np.arange(labels.shape[1]) < bos_index[:, None]
549
+ labels = np.where(prompt_mask, -100, labels)
550
+
551
+ batch["labels"] = labels
552
+ batch["decoder_input_ids"] = decoder_input_ids
553
+
554
+ return batch
555
+
556
+
557
+ def get_data_loader(
558
+ seed: int,
559
+ dataset: IterableDataset,
560
+ batch_size: int,
561
+ data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding,
562
+ shuffle: bool = False,
563
+ drop_last: bool = True,
564
+ dataloader_num_workers: int = 0,
565
+ skip_batches: int = 0,
566
+ pin_memory: bool = True,
567
+ prefetch_size: int = 0,
568
+ ) -> DataLoader:
569
+ """
570
+ Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
571
+ and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
572
+
573
+ Args:
574
+ seed (int): Numpy seed for generating pseudo random numbers. Used if shuffling the dataset.
575
+ dataset (IterableDataset): streaming dataset from which to load the data.
576
+ batch_size (int): how many samples per batch to load.
577
+ data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a
578
+ mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.
579
+ shuffle (bool, optional): set to `True` to have the batches reshuffled.
580
+ drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
581
+ if the dataset size is not divisible by the batch size. If ``False`` and
582
+ the size of dataset is not divisible by the batch size, then the last batch
583
+ will be smaller. (default: ``False``)
584
+ dataloader_num_workers (int, optional): how many subprocesses to use for data
585
+ loading. ``0`` means that the data will be loaded in the main process.
586
+ (default: ``0``)
587
+ skip_batches (int, optional): Efficiently skip the first `skip_batches`.
588
+ pin_memory (bool, optional): If ``True``, the data loader will copy Tensors
589
+ into device/CUDA pinned memory before returning them. If your data elements
590
+ are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type,
591
+ see the example below.
592
+
593
+ """
594
+ if shuffle:
595
+ dataset = dataset.shuffle(seed)
596
+
597
+ if skip_batches > 0:
598
+ dataset = dataset.skip(skip_batches * batch_size)
599
+
600
+ if prefetch_size > 0:
601
+ dataset = IterableWrapper(dataset)
602
+ dataset = dataset.prefetch(prefetch_size)
603
+
604
+ num_of_hosts = jax.process_count()
605
+ dataset = split_dataset_by_node(dataset, rank=jax.process_index(), world_size=num_of_hosts)
606
+
607
+ assert batch_size % num_of_hosts == 0, "Batch size must be divisible by the number of hosts."
608
+ if dataset.n_shards < dataloader_num_workers:
609
+ dataloader_num_workers = dataset.n_shards
610
+
611
+ data_loader = DataLoader(
612
+ dataset,
613
+ batch_size=batch_size //num_of_hosts,
614
+ drop_last=drop_last,
615
+ pin_memory=pin_memory,
616
+ collate_fn=data_collator,
617
+ num_workers=dataloader_num_workers,
618
+ )
619
+
620
+ return data_loader
621
+
622
+
623
+ def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
624
+ ordering_and_checkpoint_path = []
625
+
626
+ glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
627
+
628
+ for path in glob_checkpoints:
629
+ if use_mtime:
630
+ ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
631
+ else:
632
+ regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
633
+ if regex_match is not None and regex_match.groups() is not None:
634
+ ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
635
+
636
+ checkpoints_sorted = sorted(ordering_and_checkpoint_path)
637
+ checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
638
+ return checkpoints_sorted
639
+
640
+
641
+ def rotate_checkpoints(
642
+ save_total_limit=None, use_mtime=False, output_dir=None, checkpoint_prefix="checkpoint"
643
+ ) -> None:
644
+ if save_total_limit is None or save_total_limit <= 0:
645
+ return
646
+
647
+ # Check if we should delete older checkpoint(s)
648
+ checkpoints_sorted = sorted_checkpoints(
649
+ use_mtime=use_mtime, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix
650
+ )
651
+ if len(checkpoints_sorted) <= save_total_limit:
652
+ return
653
+
654
+ number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
655
+ checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
656
+ for checkpoint in checkpoints_to_be_deleted:
657
+ logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
658
+ shutil.rmtree(checkpoint, ignore_errors=True)
659
+
660
+
661
+ def to_fp32(t):
662
+ return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
663
+
664
+
665
+ def to_bf16(t):
666
+ return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t)
667
+
668
+
669
+ class TrainState(train_state.TrainState):
670
+ dropout_rng: jnp.ndarray
671
+ max_grad_norm: float
672
+
673
+ def apply_gradients(self, *, grads, to_dtype: to_fp32, **kwargs):
674
+ """Updates `step`, `params`, `opt_state` and `**kwargs` in return value, clipping the
675
+ gradients by the maximum grad norm.
676
+
677
+ Note that internally this function calls `.tx.update()` followed by a call
678
+ to `optax.apply_updates()` to update `params` and `opt_state`.
679
+
680
+ Args:
681
+ grads: Gradients that have the same pytree structure as `.params`.
682
+ **kwargs: Additional dataclass attributes that should be `.replace()`-ed.
683
+
684
+ Returns:
685
+ An updated instance of `self` with `step` incremented by one, `params`
686
+ and `opt_state` updated by applying `grads`, and additional attributes
687
+ replaced as specified by `kwargs`.
688
+ """
689
+ # clip gradients by global l2 norm
690
+ casted_max_grad_norm = to_dtype(self.max_grad_norm)
691
+ g_norm = linear_algebra.global_norm(grads)
692
+ g_norm = jnp.maximum(casted_max_grad_norm, g_norm)
693
+ grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads)
694
+
695
+ # perform update step in fp32 and subsequently downcast optimizer states if mixed precision training
696
+ # grads and opt_state in bf16 (need to upcast), params in fp32 (leave as is)
697
+ updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params)
698
+
699
+ new_params = optax.apply_updates(self.params, updates)
700
+
701
+ return self.replace(
702
+ step=self.step + 1,
703
+ params=new_params,
704
+ opt_state=to_dtype(new_opt_state),
705
+ **kwargs,
706
+ )
707
+
708
+ @classmethod
709
+ def create(cls, *, apply_fn, params, tx, to_dtype: to_fp32, **kwargs):
710
+ """Creates a new instance with `step=0` and initialized `opt_state`."""
711
+ # downcast optimizer state to bf16 if mixed-precision training
712
+ opt_state = tx.init(to_dtype(params))
713
+ return cls(
714
+ step=0,
715
+ apply_fn=apply_fn,
716
+ params=params,
717
+ tx=tx,
718
+ opt_state=opt_state,
719
+ **kwargs,
720
+ )
721
+
722
+ def replicate(self):
723
+ return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
724
+
725
+ def unreplicate(self):
726
+ return jax_utils.unreplicate(self)
727
+
728
+ def save_state(self, output_dir, save_total_limit=None, checkpoint_prefix="checkpoint"):
729
+ step = int(jax.device_get(unreplicate(self.step)))
730
+ serialized_state = to_bytes(self.unreplicate())
731
+
732
+ output_file = Path(os.path.join(output_dir, f"{checkpoint_prefix}-{step}", "train_state.msgpack"))
733
+ output_file.parent.mkdir(exist_ok=True, parents=True)
734
+
735
+ with output_file.open("wb") as f:
736
+ f.write(serialized_state)
737
+
738
+ logger.info(f"Flax train state saved in {output_file}")
739
+ rotate_checkpoints(
740
+ save_total_limit=save_total_limit, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix
741
+ )
742
+
743
+
744
+ def save_hf_weights(
745
+ student_state: TrainState,
746
+ student_model: FlaxWhisperForConditionalGeneration,
747
+ processor: WhisperProcessor,
748
+ output_dir: str,
749
+ cur_step: int,
750
+ total_train_steps: int,
751
+ use_scan: bool = True,
752
+ checkpoint_prefix: str = "checkpoint",
753
+ ) -> None:
754
+ # always disable scan in the params / model so that we can load from PyTorch directly - this is a no-op if we're not using scan for training
755
+ student_state_params = unreplicate(student_state.params)
756
+ student_state_params = student_model.convert_scan_to_unroll(student_state_params)
757
+ student_params = jax.device_get(student_state_params)
758
+ student_model.disable_scan()
759
+
760
+ if cur_step != total_train_steps:
761
+ output_dir = os.path.join(output_dir, f"{checkpoint_prefix}-{cur_step}")
762
+ os.makedirs(output_dir, exist_ok=True)
763
+
764
+ student_model.save_pretrained(output_dir, params=student_params)
765
+ processor.save_pretrained(output_dir)
766
+
767
+ # re-enable scan only if required for training
768
+ if use_scan:
769
+ student_model.enable_scan()
770
+
771
+
772
+ def write_train_metric(summary_writer, train_metrics, train_time, step, logging_steps):
773
+ summary_writer.scalar("train/time", train_time, step)
774
+ # Check if train_metrics is empty
775
+ if not train_metrics:
776
+ print("DEBUG: train_metrics is empty; This is probably a bug that needs fixing.")
777
+ return # Early exit if train_metrics is empty to avoid further processing
778
+
779
+ train_metrics = get_metrics(train_metrics)
780
+ for key, vals in train_metrics.items():
781
+ steps_arr = np.arange(0, step, logging_steps)[-len(vals) :]
782
+ tag = f"train/{key}"
783
+ for i, val in enumerate(vals):
784
+ summary_writer.scalar(tag, val, steps_arr[i])
785
+
786
+
787
+ def write_eval_metric(summary_writer, eval_metrics, step, prefix="eval"):
788
+ for metric_name, value in eval_metrics.items():
789
+ summary_writer.scalar(f"{prefix}/{metric_name}", value, step)
790
+
791
+
792
+ def write_wandb_metric(wandb_logger, metrics, train_time, step, epoch, prefix="train"):
793
+ log_metrics = {}
794
+ for k, v in metrics.items():
795
+ log_metrics[f"{prefix}/{k}"] = v
796
+ log_metrics[f"{prefix}/time"] = train_time
797
+ log_metrics[f"{prefix}/epoch"] = epoch
798
+ wandb_logger.log(log_metrics, step)
799
+
800
+
801
+ def write_wandb_pred(
802
+ wandb_logger, pred_str, label_str, norm_pred_str, norm_label_str, cur_step, prefix="eval", num_lines=200000
803
+ ):
804
+ # pretty name for current step: step 50000 -> step 50k
805
+ cur_step_pretty = f"{int(cur_step // 1000)}k" if cur_step > 1000 else cur_step
806
+ # convert str data to a wandb compatible format
807
+ str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
808
+ # log as a table with the appropriate headers
809
+ wandb_logger.log(
810
+ {
811
+ f"predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table(
812
+ columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data[:num_lines]
813
+ )
814
+ },
815
+ cur_step,
816
+ )
817
+ # log incorrect normalised predictions
818
+ str_data = np.asarray(str_data)
819
+ str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
820
+ # log as a table with the appropriate headers
821
+ wandb_logger.log(
822
+ {
823
+ f"incorrect_predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table(
824
+ columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data_incorrect[:num_lines]
825
+ )
826
+ },
827
+ cur_step,
828
+ )
829
+
830
+
831
+ def create_learning_rate_fn(
832
+ num_train_steps: int, lr_scheduler_type: str, num_warmup_steps: int, learning_rate: float
833
+ ) -> Callable[[int], jnp.array]:
834
+ """Returns a linear warmup, linear_decay learning rate function."""
835
+ lr_scheduler_types = ("linear", "constant_with_warmup")
836
+
837
+ if lr_scheduler_type not in lr_scheduler_types:
838
+ raise ValueError(
839
+ f"lr_scheduler_type of type {lr_scheduler_type} not supported, choose from {lr_scheduler_types}."
840
+ )
841
+
842
+ warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
843
+ decay_fn = optax.linear_schedule(
844
+ init_value=learning_rate,
845
+ end_value=0 if lr_scheduler_type == "linear" else learning_rate,
846
+ transition_steps=num_train_steps - num_warmup_steps,
847
+ )
848
+ schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
849
+ return schedule_fn
850
+
851
+
852
+ def convert_dataset_str_to_list(
853
+ dataset_names,
854
+ dataset_config_names,
855
+ splits=None,
856
+ text_column_names=None,
857
+ dataset_samples=None,
858
+ default_split="train",
859
+ ):
860
+ if isinstance(dataset_names, str):
861
+ dataset_names = dataset_names.split("+")
862
+
863
+ # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary
864
+ for i in range(len(dataset_names)):
865
+ ds_name = dataset_names[i]
866
+ dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name
867
+
868
+ dataset_config_names = dataset_config_names.split("+")
869
+ splits = splits.split("+") if splits is not None else None
870
+ text_column_names = text_column_names.split("+") if text_column_names is not None else None
871
+ dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
872
+
873
+ # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
874
+ if len(dataset_names) != len(dataset_config_names):
875
+ raise ValueError(
876
+ f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
877
+ f" {len(dataset_config_names)} configs."
878
+ )
879
+
880
+ if splits is not None and len(splits) != len(dataset_names):
881
+ raise ValueError(
882
+ f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
883
+ )
884
+
885
+ if text_column_names is not None and len(text_column_names) != len(dataset_names):
886
+ raise ValueError(
887
+ f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
888
+ f" {len(text_column_names)} text column names."
889
+ )
890
+
891
+ if dataset_samples is not None:
892
+ if len(dataset_samples) != len(dataset_names):
893
+ raise ValueError(
894
+ f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
895
+ f"{len(dataset_samples)} samples."
896
+ )
897
+ dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
898
+ else:
899
+ dataset_samples = [None] * len(dataset_names)
900
+
901
+ text_column_names = (
902
+ text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
903
+ )
904
+ splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
905
+
906
+ dataset_names_dict = []
907
+ for i, ds_name in enumerate(dataset_names):
908
+ dataset_names_dict.append(
909
+ {
910
+ "name": ds_name,
911
+ "config": dataset_config_names[i],
912
+ "split": splits[i],
913
+ "text_column_name": text_column_names[i],
914
+ "samples": dataset_samples[i],
915
+ }
916
+ )
917
+ return dataset_names_dict
918
+
919
+
920
+ def load_multiple_datasets(
921
+ dataset_names: Union[List, str],
922
+ dataset_config_names: Union[List, str],
923
+ splits: Optional[Union[List, str]] = None,
924
+ text_column_names: Optional[List] = None,
925
+ sampling_rate: Optional[int] = 16000,
926
+ stopping_strategy: Optional[str] = "first_exhausted",
927
+ dataset_samples: Optional[Union[List, np.array]] = None,
928
+ streaming: bool = True,
929
+ seed: int = None,
930
+ **kwargs,
931
+ ) -> IterableDataset:
932
+ dataset_names_dict = convert_dataset_str_to_list(
933
+ dataset_names, dataset_config_names, splits, text_column_names, dataset_samples
934
+ )
935
+
936
+ if dataset_samples is not None:
937
+ dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
938
+ probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
939
+ else:
940
+ probabilities = None
941
+
942
+ if len(dataset_names_dict) == 1:
943
+ dataset_dict = dataset_names_dict[0]
944
+ # we have a single dataset so just return it as is
945
+ return load_dataset(
946
+ dataset_dict["name"],
947
+ dataset_dict["config"],
948
+ split=dataset_dict["split"],
949
+ streaming=streaming,
950
+ **kwargs,
951
+ )
952
+
953
+ all_datasets = []
954
+ # iterate over the datasets we want to interleave
955
+ for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
956
+ dataset = load_dataset(
957
+ dataset_dict["name"],
958
+ dataset_dict["config"],
959
+ split=dataset_dict["split"],
960
+ streaming=streaming,
961
+ **kwargs,
962
+ )
963
+ # resample to specified sampling rate
964
+ dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
965
+ dataset = dataset.remove_columns(
966
+ set(dataset.features.keys()) - {"audio", dataset_dict["text_column_name"], "whisper_transcript"}
967
+ )
968
+ all_datasets.append(dataset)
969
+
970
+ if streaming:
971
+ interleaved_dataset = interleave_datasets(
972
+ all_datasets,
973
+ stopping_strategy=stopping_strategy,
974
+ probabilities=probabilities,
975
+ seed=seed,
976
+ )
977
+ else:
978
+ interleaved_dataset = concatenate_datasets(all_datasets)
979
+
980
+ return interleaved_dataset
981
+
982
+
983
+ def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> dict:
984
+ """Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used
985
+ for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers
986
+ in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer
987
+ 3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer
988
+ 2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely
989
+ the output of this function for the arguments (student_layers=3, teacher_layers=12)."""
990
+ layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int)
991
+ layer_intervals[-1] = teacher_layers - 1
992
+ layer_map = {}
993
+
994
+ for student_layer, teacher_layer in enumerate(layer_intervals):
995
+ layer_map[student_layer] = teacher_layer
996
+
997
+ return layer_map
998
+
999
+
1000
+ class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor):
1001
+ def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
1002
+ """
1003
+ Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation
1004
+ computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation
1005
+ in transformers, and matches to within 1e-5 abs tolerance.
1006
+ """
1007
+ waveform = torch.from_numpy(waveform).type(torch.float32)
1008
+
1009
+ window = torch.hann_window(self.n_fft)
1010
+ stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
1011
+ magnitudes = stft[..., :-1].abs() ** 2
1012
+
1013
+ mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
1014
+ mel_spec = mel_filters.T @ magnitudes
1015
+
1016
+ log_spec = torch.clamp(mel_spec, min=1e-10).log10()
1017
+ log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
1018
+ log_spec = (log_spec + 4.0) / 4.0
1019
+ return log_spec.numpy()
1020
+
1021
+
1022
+ def main():
1023
+ # 1. Parse input arguments
1024
+ # See all possible arguments in src/transformers/training_args.py
1025
+ # or by passing the --help flag to this script.
1026
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
1027
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments))
1028
+
1029
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
1030
+ # If we pass only one argument to the script and it's the path to a json file,
1031
+ # let's parse it to get our arguments.
1032
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
1033
+ else:
1034
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
1035
+
1036
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
1037
+ # information sent is the one passed as arguments along with your JAX/Flax versions.
1038
+ send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax")
1039
+
1040
+ # 2. Define remote logging - do this early so that we get the full traceback on our remote logs
1041
+ # Enable tensorboard only on the master node
1042
+ has_tensorboard = is_tensorboard_available()
1043
+ if has_tensorboard:
1044
+ if jax.process_index() == 0:
1045
+ try:
1046
+ from flax.metrics.tensorboard import SummaryWriter
1047
+
1048
+ summary_writer = SummaryWriter(log_dir=os.path.join(Path(training_args.output_dir), "runs"))
1049
+ except ImportError as ie:
1050
+ has_tensorboard = False
1051
+ logger.warning(
1052
+ "Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}"
1053
+ )
1054
+ else:
1055
+ logger.warning(
1056
+ "Unable to display metrics through TensorBoard because the package is not"
1057
+ " installed: Please run `pip install tensorboard` to enable."
1058
+ )
1059
+
1060
+ # Enable wandb only on the master node
1061
+ has_wandb = is_wandb_available()
1062
+ if has_wandb:
1063
+ import wandb as wandb_logger
1064
+
1065
+ # Set up wandb run
1066
+ if jax.process_index() == 0:
1067
+ wandb_logger.init(
1068
+ project=data_args.wandb_project,
1069
+ name=data_args.wandb_name,
1070
+ job_type=data_args.wandb_job_type,
1071
+ dir=data_args.wandb_dir,
1072
+ save_code=data_args.save_code_to_wandb,
1073
+ )
1074
+ else:
1075
+ logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.")
1076
+
1077
+ # 3. Setup local logging
1078
+ # Make one log on every process with the configuration for debugging.
1079
+ logging.basicConfig(
1080
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
1081
+ datefmt="%m/%d/%Y %H:%M:%S",
1082
+ handlers=[logging.StreamHandler(sys.stdout)],
1083
+ )
1084
+ # Set the verbosity to info of the Transformers logger.
1085
+ # We only want one process per machine to log things on the screen.
1086
+ logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
1087
+ if jax.process_index() == 0:
1088
+ datasets.utils.logging.set_verbosity_warning()
1089
+ transformers.utils.logging.set_verbosity_info()
1090
+ else:
1091
+ datasets.utils.logging.set_verbosity_error()
1092
+ transformers.utils.logging.set_verbosity_error()
1093
+
1094
+ logger.info("Training/evaluation parameters %s", training_args)
1095
+
1096
+ # Check the output dir is valid
1097
+ if (
1098
+ os.path.exists(training_args.output_dir)
1099
+ and os.listdir(training_args.output_dir)
1100
+ and training_args.do_train
1101
+ and not training_args.overwrite_output_dir
1102
+ ):
1103
+ raise ValueError(
1104
+ f"Output directory ({training_args.output_dir}) already exists and is not"
1105
+ " empty. Use `--overwrite_output_dir` to overcome."
1106
+ )
1107
+
1108
+ # 4. Handle the repository creation
1109
+ if training_args.push_to_hub:
1110
+ if training_args.hub_model_id is None:
1111
+ repo_name = get_full_repo_name(
1112
+ Path(training_args.output_dir).absolute().name,
1113
+ token=training_args.hub_token,
1114
+ )
1115
+ else:
1116
+ repo_name = training_args.hub_model_id
1117
+ create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
1118
+ repo = Repository(
1119
+ training_args.output_dir,
1120
+ clone_from=repo_name,
1121
+ token=training_args.hub_token,
1122
+ )
1123
+
1124
+ if training_args.compilation_cache:
1125
+ cc.initialize_cache(os.path.join(model_args.cache_dir, "jax_cache"))
1126
+
1127
+ # 5. Load dataset
1128
+ raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
1129
+
1130
+ # set seed for determinism
1131
+ set_seed(training_args.seed)
1132
+
1133
+ if training_args.do_train:
1134
+ raw_datasets["train"] = load_multiple_datasets(
1135
+ data_args.train_dataset_name,
1136
+ data_args.train_dataset_config_name,
1137
+ splits=data_args.train_split_name,
1138
+ streaming=data_args.streaming,
1139
+ dataset_samples=data_args.train_dataset_samples,
1140
+ seed=training_args.seed,
1141
+ trust_remote_code=True,
1142
+ cache_dir=data_args.dataset_cache_dir,
1143
+ token=True if model_args.use_auth_token else None,
1144
+ )
1145
+
1146
+ if training_args.do_eval:
1147
+ dataset_names_dict = convert_dataset_str_to_list(
1148
+ data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
1149
+ (
1150
+ data_args.eval_dataset_config_name
1151
+ if data_args.eval_dataset_config_name
1152
+ else data_args.train_dataset_config_name
1153
+ ),
1154
+ splits=data_args.eval_split_name,
1155
+ text_column_names=data_args.eval_text_column_name,
1156
+ )
1157
+ all_eval_splits = []
1158
+ if len(dataset_names_dict) == 1:
1159
+ # load a single eval set
1160
+ dataset_dict = dataset_names_dict[0]
1161
+ all_eval_splits.append("eval")
1162
+ raw_datasets["eval"] = load_dataset(
1163
+ dataset_dict["name"],
1164
+ dataset_dict["config"],
1165
+ split=dataset_dict["split"],
1166
+ trust_remote_code=True,
1167
+ cache_dir=data_args.dataset_cache_dir,
1168
+ token=True if model_args.use_auth_token else None,
1169
+ streaming=data_args.streaming,
1170
+ )
1171
+ else:
1172
+ # load multiple eval sets
1173
+ for dataset_dict in dataset_names_dict:
1174
+ if dataset_dict["name"] == "esb/diagnostic-dataset":
1175
+ # for the ESB diagnostic dataset, the dataset name is effectively the config
1176
+ pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}"
1177
+ else:
1178
+ pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
1179
+ all_eval_splits.append(pretty_name)
1180
+ raw_datasets[pretty_name] = load_dataset(
1181
+ dataset_dict["name"],
1182
+ dataset_dict["config"],
1183
+ split=dataset_dict["split"],
1184
+ cache_dir=data_args.dataset_cache_dir,
1185
+ token=True if model_args.use_auth_token else None,
1186
+ trust_remote_code=True,
1187
+ streaming=data_args.streaming,
1188
+ )
1189
+ features = raw_datasets[pretty_name].features.keys()
1190
+ if "text" not in features:
1191
+ raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
1192
+ dataset_dict["text_column_name"], "text"
1193
+ )
1194
+ raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
1195
+ set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"}
1196
+ )
1197
+
1198
+ if not training_args.do_train and not training_args.do_eval:
1199
+ raise ValueError(
1200
+ "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
1201
+ )
1202
+
1203
+ raw_datasets_train_features = list(raw_datasets["train"].features.keys())
1204
+
1205
+ if data_args.audio_column_name not in raw_datasets_train_features:
1206
+ raise ValueError(
1207
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset"
1208
+ f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to"
1209
+ " the correct audio column - one of"
1210
+ f" {', '.join(raw_datasets_train_features)}."
1211
+ )
1212
+
1213
+ if data_args.train_text_column_name not in raw_datasets_train_features:
1214
+ raise ValueError(
1215
+ f"--train_text_column_name {data_args.train_text_column_name} not found in dataset"
1216
+ f" '{data_args.dataset_name}'. Make sure to set `--train_text_column_name` to the"
1217
+ " correct text column - one of"
1218
+ f" {', '.join(raw_datasets_train_features)}."
1219
+ )
1220
+
1221
+ # 6. Load pretrained model, tokenizer, and feature extractor
1222
+ config = WhisperConfig.from_pretrained(
1223
+ (model_args.config_name if model_args.config_name else model_args.model_name_or_path),
1224
+ cache_dir=model_args.cache_dir,
1225
+ revision=model_args.model_revision,
1226
+ token=True if model_args.use_auth_token else None,
1227
+ )
1228
+ feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained(
1229
+ (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
1230
+ cache_dir=model_args.cache_dir,
1231
+ revision=model_args.model_revision,
1232
+ token=True if model_args.use_auth_token else None,
1233
+ )
1234
+ tokenizer = WhisperTokenizerFast.from_pretrained(
1235
+ (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
1236
+ cache_dir=model_args.cache_dir,
1237
+ use_fast=model_args.use_fast_tokenizer,
1238
+ revision=model_args.model_revision,
1239
+ token=True if model_args.use_auth_token else None,
1240
+ )
1241
+
1242
+ # override timestamp tokens until tokenizer issues are fixed in transformers
1243
+ timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
1244
+ tokenizer.add_tokens(timestamps)
1245
+
1246
+ config.update(
1247
+ {
1248
+ "activation_dropout": model_args.activation_dropout,
1249
+ "attention_dropout": model_args.attention_dropout,
1250
+ "dropout": model_args.dropout,
1251
+ }
1252
+ )
1253
+
1254
+ if training_args.precision == "full_mixed":
1255
+ # forward pass, backward pass and optimiser states in bf16
1256
+ dtype = jnp.bfloat16
1257
+ to_dtype = to_bf16
1258
+ elif training_args.precision == "half_mixed" or model_args.dtype == "bfloat16":
1259
+ # forward pass in bf16, backward pass and optimiser states in fp32
1260
+ dtype = jnp.bfloat16
1261
+ to_dtype = to_fp32
1262
+ else:
1263
+ if training_args.precision != "full":
1264
+ raise ValueError(
1265
+ f"`precision` should be one of: `full`, `half_mixed` or `full_mixed`, got {training_args.precision}"
1266
+ )
1267
+ # forward pass, backward pass and optimiser states in fp32
1268
+ dtype = jnp.float32
1269
+ to_dtype = to_fp32
1270
+
1271
+ student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained(
1272
+ model_args.model_name_or_path,
1273
+ config=config,
1274
+ dtype=dtype,
1275
+ cache_dir=model_args.cache_dir,
1276
+ revision=model_args.model_revision,
1277
+ subfolder=model_args.subfolder,
1278
+ token=True if model_args.use_auth_token else None,
1279
+ _do_init=False,
1280
+ use_scan=model_args.load_with_scan_weights,
1281
+ )
1282
+
1283
+ teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained(
1284
+ model_args.teacher_model_name_or_path,
1285
+ # config=config,
1286
+ dtype=dtype,
1287
+ cache_dir=model_args.cache_dir,
1288
+ # revision=model_args.model_revision,
1289
+ token=True if model_args.use_auth_token else None,
1290
+ _do_init=False,
1291
+ )
1292
+
1293
+ if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
1294
+ raise ValueError(
1295
+ f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
1296
+ f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
1297
+ f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
1298
+ )
1299
+
1300
+ # enable scan / gradient checkpointing if necessary
1301
+ if training_args.use_scan:
1302
+ student_model.enable_scan() # to enable scan in the nn.Module
1303
+ student_params = student_model.convert_unroll_to_scan(student_params) # to convert the unrolled params to scan
1304
+
1305
+ teacher_model.enable_scan() # faster compile time (even though we don't train the teacher)
1306
+ teacher_params = teacher_model.convert_unroll_to_scan(teacher_params)
1307
+
1308
+ if training_args.gradient_checkpointing:
1309
+ student_model.enable_gradient_checkpointing() # to enable checkpointing in the nn.Module, there is no change to the params structure
1310
+ teacher_model.enable_gradient_checkpointing()
1311
+
1312
+ if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
1313
+ # We need to set the language and task ids for previously multilingual checkpoints - for now we hardcode this to Norwegian
1314
+ tokenizer.set_prefix_tokens(language="Norwegian", task="transcribe", predict_timestamps=False)
1315
+ student_model.generation_config.update(
1316
+ **{
1317
+ "language": "<|no|>",
1318
+ "task": "transcribe",
1319
+ }
1320
+ )
1321
+
1322
+ # 7. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
1323
+ # so we just need to set the correct target sampling rate.
1324
+ raw_datasets = raw_datasets.cast_column(
1325
+ data_args.audio_column_name,
1326
+ datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
1327
+ )
1328
+
1329
+ # 8. Preprocessing the datasets.
1330
+ # We need to read the audio files as arrays and tokenize the targets.
1331
+ max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
1332
+ min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
1333
+ max_label_length = (
1334
+ data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
1335
+ )
1336
+ audio_column_name = data_args.audio_column_name
1337
+ num_workers = data_args.preprocessing_num_workers
1338
+ dataloader_num_workers = training_args.dataloader_num_workers
1339
+ dataloader_prefetch_size = data_args.prefetch_size
1340
+ train_text_column_name = data_args.train_text_column_name
1341
+ eval_text_column_name = "text"
1342
+ model_input_name = feature_extractor.model_input_names[0]
1343
+ #normalizer = BasicTextNormalizer(tokenizer.english_spelling_normalizer)
1344
+ normalizer = BasicTextNormalizer()
1345
+ wer_threshold = data_args.wer_threshold
1346
+ round_timestamps = data_args.round_timestamps
1347
+
1348
+ if training_args.do_train and data_args.max_train_samples is not None:
1349
+ raw_datasets["train"] = (
1350
+ raw_datasets["train"].take(data_args.max_train_samples)
1351
+ if data_args.streaming
1352
+ else raw_datasets["train"].select(range(data_args.max_train_samples))
1353
+ )
1354
+
1355
+ if training_args.do_eval and data_args.max_eval_samples is not None:
1356
+ for eval_split in all_eval_splits:
1357
+ raw_datasets[eval_split] = (
1358
+ raw_datasets[eval_split].take(data_args.max_eval_samples)
1359
+ if data_args.streaming
1360
+ else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
1361
+ )
1362
+
1363
+ # 10.3: filter training data based on WER threshold -> this is KEY to good distillation performance
1364
+ def is_wer_in_range(ground_truth, whisper_transcript):
1365
+ norm_ground_truth = normalizer(ground_truth)
1366
+ if whisper_transcript is not None and whisper_transcript.upper() == whisper_transcript:
1367
+ # filter entirely upper-case transcriptions: these are erroneous generations from large-v3
1368
+ return False
1369
+ elif len(norm_ground_truth) == 0 and len(normalizer(whisper_transcript)) == 0:
1370
+ return True
1371
+ elif len(norm_ground_truth.strip()) > 0 and whisper_transcript is not None and len(normalizer(whisper_transcript).strip()) > 0:
1372
+ norm_whisper_transcript = normalizer(whisper_transcript)
1373
+ wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth])
1374
+ return wer < wer_threshold
1375
+ else:
1376
+ # filter automatically since we cant know WER
1377
+ return False
1378
+
1379
+
1380
+ filter_by_wer_threshold = partial(
1381
+ raw_datasets["train"].filter,
1382
+ function=is_wer_in_range,
1383
+ input_columns=[eval_text_column_name, train_text_column_name],
1384
+ )
1385
+
1386
+ if wer_threshold is not None:
1387
+ raw_datasets["train"] = (
1388
+ filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer")
1389
+ if not data_args.streaming
1390
+ else filter_by_wer_threshold()
1391
+ )
1392
+
1393
+ def has_timestamp_tokens(input_str):
1394
+ """
1395
+ Identify whether the input string contains timestamp tokens, of the form <|0.00|>, by searching for
1396
+ pairs of left and right-angle brackets.
1397
+ """
1398
+ return bool(re.search("\<[^\>]*\>", input_str))
1399
+
1400
+ def round_timestamp_tokens(input_str: str, ndigits: int = 1):
1401
+ timestamps = re.findall("\<[^\>]*\>", input_str, re.DOTALL)
1402
+ for token in timestamps:
1403
+ # extract time digits from timestamp token, e.g. <|6.24|> to 6.24
1404
+ time_digit = token[2:-2]
1405
+ # round to specified number of digits, e.g. 6.24 to 6.2
1406
+ time_digit = round(float(time_digit), ndigits=ndigits)
1407
+ # replace in original string with the same precision, e.g. <|6.24|> to <|6.20|>
1408
+ input_str = input_str.replace(token, "<|{:.2f}|>".format(time_digit))
1409
+ return input_str
1410
+
1411
+ def prepare_train_dataset(batch):
1412
+ # process audio input
1413
+ sample = batch[audio_column_name]
1414
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
1415
+ batch[model_input_name] = inputs.get(model_input_name)[0]
1416
+ batch["input_length"] = len(sample["array"])
1417
+
1418
+ # process text targets
1419
+ input_str = batch[train_text_column_name]
1420
+
1421
+ # prompt & timestamp processing: for now, we only do one or the other
1422
+ if input_str.startswith("<|startoftranscript|>") or input_str.startswith("<|startofprev|>"):
1423
+ # prompted target text already has special ids added, so don't add them here
1424
+ batch["labels"] = tokenizer(input_str, add_special_tokens=False).input_ids
1425
+ return batch
1426
+
1427
+ has_timestamps = has_timestamp_tokens(input_str)
1428
+
1429
+ if has_timestamps:
1430
+ predict_timestamps = bool(np.random.binomial(1, data_args.timestamp_probability))
1431
+ if not predict_timestamps:
1432
+ # filter timestamp token ids if not part of the prediction task
1433
+ input_str = tokenizer._filter_timestamp_ids(input_str)
1434
+ elif round_timestamps:
1435
+ input_str = round_timestamp_tokens(input_str)
1436
+ else:
1437
+ predict_timestamps = False
1438
+
1439
+ tokenizer.set_prefix_tokens(language="Norwegian", task="transcribe", predict_timestamps=predict_timestamps)
1440
+ input_ids = tokenizer(input_str).input_ids
1441
+ batch["labels"] = input_ids
1442
+ return batch
1443
+
1444
+ def prepare_eval_dataset(batch):
1445
+ # process audio
1446
+ sample = batch[audio_column_name]
1447
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
1448
+ # process audio length
1449
+ batch[model_input_name] = inputs.get(model_input_name)[0]
1450
+ batch["input_length"] = len(sample["array"])
1451
+
1452
+ # process targets
1453
+ input_str = batch[eval_text_column_name]
1454
+ batch["labels"] = tokenizer(input_str).input_ids
1455
+ return batch
1456
+
1457
+ vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
1458
+ if training_args.do_train:
1459
+ map_fn_train = partial(
1460
+ raw_datasets["train"].map, function=prepare_train_dataset, remove_columns=raw_datasets_train_features
1461
+ )
1462
+ vectorized_datasets["train"] = (
1463
+ map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
1464
+ if not data_args.streaming
1465
+ else map_fn_train()
1466
+ )
1467
+ if training_args.do_eval:
1468
+ for eval_split in all_eval_splits:
1469
+ raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
1470
+ map_fn_eval = partial(
1471
+ raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
1472
+ )
1473
+ vectorized_datasets[eval_split] = (
1474
+ map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
1475
+ if not data_args.streaming
1476
+ else map_fn_eval()
1477
+ )
1478
+
1479
+ # filter training data with inputs longer than max_input_length
1480
+ def is_audio_in_length_range(length):
1481
+ return min_input_length < length < max_input_length
1482
+
1483
+ filter_by_audio_fn = partial(
1484
+ vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
1485
+ )
1486
+ vectorized_datasets = (
1487
+ filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
1488
+ if not data_args.streaming
1489
+ else filter_by_audio_fn()
1490
+ )
1491
+
1492
+ # filter training data with labels longer than max_label_length
1493
+ def is_labels_in_length_range(labels):
1494
+ return 0 < len(labels) < max_label_length
1495
+
1496
+ filter_by_labels_fn = partial(
1497
+ vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
1498
+ )
1499
+ vectorized_datasets = (
1500
+ filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
1501
+ if not data_args.streaming
1502
+ else filter_by_labels_fn()
1503
+ )
1504
+
1505
+ # for large datasets it is advised to run the preprocessing on a
1506
+ # single machine first with `args.preprocessing_only` since there will mostly likely
1507
+ # be a timeout when running the script in distributed mode.
1508
+ # In a second step `args.preprocessing_only` can then be set to `False` to load the
1509
+ # cached dataset
1510
+ if data_args.preprocessing_only:
1511
+ cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
1512
+ logger.info(f"Data preprocessing finished. Files cached at {cache}.")
1513
+ return
1514
+
1515
+ # 8. Load Metric
1516
+ metric = evaluate.load("wer")
1517
+ # convention is that we space all punctuation *except* apostrophes
1518
+ all_punctuation = list(string.punctuation.replace("'", ""))
1519
+ return_timestamps = data_args.return_timestamps if data_args.timestamp_probability > 0 else False
1520
+
1521
+ def compute_metrics(preds, labels):
1522
+ # replace padded labels by the padding token
1523
+ for idx in range(len(labels)):
1524
+ labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
1525
+
1526
+ pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
1527
+ # we do not want to group tokens when computing the metrics
1528
+ label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
1529
+
1530
+ # space punctuation for orthographic WER (c.f. ESB paper https://arxiv.org/abs/2210.13352)
1531
+ spaced_pred_str = [
1532
+ pred_str[i].replace(punctuation, f" {punctuation} ")
1533
+ for punctuation in all_punctuation
1534
+ for i in range(len(pred_str))
1535
+ ]
1536
+ spaced_label_str = [
1537
+ label_str[i].replace(punctuation, f" {punctuation} ")
1538
+ for punctuation in all_punctuation
1539
+ for i in range(len(label_str))
1540
+ ]
1541
+ wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str)
1542
+
1543
+ norm_pred_str, norm_label_str = [], []
1544
+
1545
+ # Iterate through all predictions and labels
1546
+ for pred, label in zip(pred_str, label_str):
1547
+ # Normalize the prediction and label
1548
+ normalized_pred = normalizer(pred)
1549
+ normalized_label = normalizer(label)
1550
+
1551
+ # If either normalized string is empty after normalization, replace with "<|nospeech|>"
1552
+ if not normalized_pred.strip():
1553
+ normalized_pred = "<|nospeech|>"
1554
+ if not normalized_label.strip():
1555
+ normalized_label = "<|nospeech|>"
1556
+
1557
+ norm_pred_str.append(normalized_pred)
1558
+ norm_label_str.append(normalized_label)
1559
+
1560
+ # Replace original strings with "<|nocaptions|>" where necessary for consistency
1561
+ pred_str = [pred if len(pred.strip()) > 0 else "<|nospeech|>" for pred in pred_str]
1562
+ label_str = [label if len(label.strip()) > 0 else "<|nospeech|>" for label in label_str]
1563
+
1564
+ # Compute WER using all entries, including those with "<|nocaptions|>"
1565
+ wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
1566
+ return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str
1567
+
1568
+
1569
+ # 9. Save feature extractor, tokenizer, config and generation config
1570
+ feature_extractor.save_pretrained(training_args.output_dir)
1571
+ tokenizer.save_pretrained(training_args.output_dir)
1572
+ config.save_pretrained(training_args.output_dir)
1573
+ student_model.generation_config.save_pretrained(
1574
+ training_args.output_dir
1575
+ ) # generation config stays bound to model to make it easy to jit
1576
+
1577
+ processor = WhisperProcessor.from_pretrained(training_args.output_dir)
1578
+
1579
+ data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
1580
+ processor=processor,
1581
+ decoder_start_token_id=student_model.config.decoder_start_token_id, # <|startoftranscript|>
1582
+ decoder_prev_token_id=tokenizer.all_special_ids[-3], # <|startofprev|>
1583
+ input_padding="longest",
1584
+ target_padding="max_length",
1585
+ max_target_length=max_label_length,
1586
+ )
1587
+
1588
+ # Initialize our training
1589
+ rng = jax.random.PRNGKey(training_args.seed)
1590
+ rng, dropout_rng = jax.random.split(rng)
1591
+
1592
+ # Store some constants
1593
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
1594
+ gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
1595
+ per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
1596
+ eval_batch_size = per_device_eval_batch_size * jax.device_count()
1597
+
1598
+ if not data_args.streaming and training_args.max_steps < 0:
1599
+ num_epochs = int(training_args.num_train_epochs)
1600
+ steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size
1601
+ total_train_steps = steps_per_epoch * num_epochs
1602
+ elif training_args.max_steps > 0:
1603
+ logger.info("max_steps is given, it will override any value given in num_train_epochs")
1604
+ total_train_steps = int(training_args.max_steps)
1605
+ # Setting a very large number of epochs so we go as many times as necessary over the iterator.
1606
+ num_epochs = sys.maxsize
1607
+ steps_per_epoch = total_train_steps
1608
+ else:
1609
+ raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")
1610
+
1611
+ if training_args.eval_steps is None:
1612
+ logger.info(
1613
+ f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
1614
+ )
1615
+ eval_steps = steps_per_epoch
1616
+ else:
1617
+ eval_steps = training_args.eval_steps
1618
+
1619
+ # Create learning rate schedule
1620
+ linear_decay_lr_schedule_fn = create_learning_rate_fn(
1621
+ total_train_steps * gradient_accumulation_steps,
1622
+ training_args.lr_scheduler_type,
1623
+ training_args.warmup_steps * gradient_accumulation_steps,
1624
+ training_args.learning_rate,
1625
+ )
1626
+
1627
+ # We use Optax's "masking" functionality to not apply weight decay
1628
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
1629
+ # mask boolean with the same structure as the parameters.
1630
+ # The mask is True for parameters that should be decayed.
1631
+ def decay_mask_fn(params):
1632
+ flat_params = traverse_util.flatten_dict(params)
1633
+ # find out all LayerNorm parameters
1634
+ layer_norm_candidates = [
1635
+ "layer_norm",
1636
+ "self_attn_layer_norm",
1637
+ "final_layer_norm",
1638
+ "encoder_attn_layer_norm",
1639
+ ]
1640
+ layer_norm_named_params = {
1641
+ layer[-2:]
1642
+ for layer_norm_name in layer_norm_candidates
1643
+ for layer in flat_params.keys()
1644
+ if layer_norm_name in "".join(layer).lower()
1645
+ }
1646
+ flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params}
1647
+ return traverse_util.unflatten_dict(flat_mask)
1648
+
1649
+ # create adam optimizer
1650
+ adamw = optax.adamw(
1651
+ learning_rate=linear_decay_lr_schedule_fn,
1652
+ b1=training_args.adam_beta1,
1653
+ b2=training_args.adam_beta2,
1654
+ eps=training_args.adam_epsilon,
1655
+ weight_decay=training_args.weight_decay,
1656
+ mask=decay_mask_fn,
1657
+ )
1658
+
1659
+ if gradient_accumulation_steps > 1:
1660
+ # accumulate gradients and apply once every k steps
1661
+ adamw = optax.MultiSteps(adamw, every_k_schedule=gradient_accumulation_steps)
1662
+
1663
+ share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model
1664
+ encoder_layer_mapping = get_layers_to_supervise(
1665
+ student_model.config.encoder_layers, teacher_model.config.encoder_layers
1666
+ )
1667
+ decoder_layer_mapping = get_layers_to_supervise(
1668
+ student_model.config.decoder_layers, teacher_model.config.decoder_layers
1669
+ )
1670
+
1671
+ # Setup train state
1672
+ student_state = TrainState.create(
1673
+ apply_fn=student_model.decode if share_hidden_states else student_model.__call__,
1674
+ params=student_params,
1675
+ tx=adamw,
1676
+ to_dtype=to_dtype,
1677
+ dropout_rng=dropout_rng,
1678
+ max_grad_norm=training_args.max_grad_norm,
1679
+ )
1680
+
1681
+ if training_args.resume_from_checkpoint is not None:
1682
+ if os.path.isfile(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")):
1683
+ logger.info(
1684
+ f"Checkpoint detected, resuming training at {training_args.resume_from_checkpoint}. To avoid "
1685
+ "this behavior, omit the resume_from_checkpoint argument."
1686
+ )
1687
+ with Path(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")).open("rb") as f:
1688
+ student_state = from_bytes(student_state, f.read())
1689
+ else:
1690
+ logger.warning(
1691
+ f"Checkpoint {training_args.resume_from_checkpoint} not detected, training from scratch. Ensure "
1692
+ f"you pass the path to a folder with a valid checkpoint for your model."
1693
+ )
1694
+
1695
+ def cross_entropy_loss(logits, labels):
1696
+ vocab_size = logits.shape[-1]
1697
+ # optax onehot always returns a float32 device array, need to downcast if performing mixed precision training
1698
+ onehot_targets = to_dtype(onehot(labels, vocab_size))
1699
+ loss = optax.softmax_cross_entropy(logits, onehot_targets)
1700
+ # ignore padded tokens from loss, i.e. where labels are not set to -100
1701
+ padding = labels >= 0
1702
+ loss = loss * padding
1703
+ loss = loss.sum()
1704
+ num_labels = padding.sum()
1705
+ return loss, num_labels
1706
+
1707
+ # temperature smoothed kl-divergence
1708
+ def kl_divergence(target_distribution, log_predicted_distribution, labels, eps=1e-20):
1709
+ divergence = -target_distribution * (log_predicted_distribution - jnp.log(target_distribution + eps))
1710
+ # ignore padded tokens from divergence, i.e. where labels are not set to -100
1711
+ padding_mask = labels >= 0
1712
+ padding_mask = jnp.expand_dims(padding_mask, axis=-1)
1713
+ divergence = (divergence * padding_mask).sum()
1714
+ return to_dtype(divergence) # respect the dtype of the backprop
1715
+
1716
+ def mean_square_error_loss(student_outputs, teacher_outputs):
1717
+ mse = dtype(0.0)
1718
+
1719
+ # tie encoder embeddings
1720
+ mse += jnp.mean(
1721
+ jnp.square(teacher_outputs.encoder_hidden_states[0] - student_outputs.encoder_hidden_states[0])
1722
+ )
1723
+
1724
+ for student_layer_id, teacher_layer_id in encoder_layer_mapping.items():
1725
+ # offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state
1726
+ student_hidden_state = student_outputs.encoder_hidden_states[student_layer_id + 1]
1727
+ teacher_hidden_state = teacher_outputs.encoder_hidden_states[teacher_layer_id + 1]
1728
+ mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state))
1729
+
1730
+ # student_attention = student_outputs.encoder_attentions[student_layer_id]
1731
+ # teacher_attention = teacher_outputs.encoder_attentions[teacher_layer_id]
1732
+ # mse += jnp.mean(jnp.square(student_attention - teacher_attention))
1733
+
1734
+ # tie decoder embeddings
1735
+ mse += jnp.mean(
1736
+ jnp.square(teacher_outputs.decoder_hidden_states[0] - student_outputs.decoder_hidden_states[0])
1737
+ )
1738
+
1739
+ for student_layer_id, teacher_layer_id in decoder_layer_mapping.items():
1740
+ # offset the hidden-state layer ids by 1 to account for the extra embedding hidden-state
1741
+ student_hidden_state = student_outputs.decoder_hidden_states[student_layer_id + 1]
1742
+ teacher_hidden_state = teacher_outputs.decoder_hidden_states[teacher_layer_id + 1]
1743
+ mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state))
1744
+
1745
+ # student_attention = student_outputs.decoder_attentions[student_layer_id]
1746
+ # teacher_attention = teacher_outputs.decoder_attentions[teacher_layer_id]
1747
+ # mse += jnp.mean(jnp.square(student_attention - teacher_attention))
1748
+
1749
+ # student_cross_attention = student_outputs.cross_attentions[student_layer_id]
1750
+ # teacher_cross_attention = teacher_outputs.cross_attentions[teacher_layer_id]
1751
+ # mse += jnp.mean(jnp.square(student_cross_attention - teacher_cross_attention))
1752
+
1753
+ return to_dtype(mse) # respect the dtype of the backprop
1754
+
1755
+ # Define gradient update step fn
1756
+ def train_step(
1757
+ student_state,
1758
+ teacher_params,
1759
+ batch,
1760
+ freeze_encoder,
1761
+ share_hidden_states,
1762
+ temperature=2.0,
1763
+ ):
1764
+ dropout_rng, new_dropout_rng = jax.random.split(student_state.dropout_rng)
1765
+
1766
+ def compute_loss(student_params):
1767
+ labels = batch.pop("labels")
1768
+ output_hidden_states = not share_hidden_states and training_args.mse_weight > 0.0
1769
+
1770
+ teacher_outputs = teacher_model(
1771
+ **batch,
1772
+ params=teacher_params,
1773
+ freeze_encoder=True,
1774
+ output_hidden_states=output_hidden_states,
1775
+ train=False,
1776
+ )
1777
+
1778
+ if share_hidden_states:
1779
+ # if the student and teacher share the same frozen encoder then we don't have to recompute the
1780
+ # encoder hidden-states for the student model, we can just re-use from the teacher
1781
+ encoder_hidden_states = jax.lax.stop_gradient(teacher_outputs.encoder_last_hidden_state)
1782
+ encoder_outputs = FlaxBaseModelOutput(last_hidden_state=encoder_hidden_states)
1783
+
1784
+ student_outputs = student_state.apply_fn(
1785
+ decoder_input_ids=batch["decoder_input_ids"],
1786
+ encoder_outputs=encoder_outputs,
1787
+ params=student_params,
1788
+ dropout_rng=dropout_rng,
1789
+ train=True,
1790
+ )
1791
+ else:
1792
+ # do the full forward pass for the student model (encoder + decoder)
1793
+ student_outputs = student_state.apply_fn(
1794
+ **batch,
1795
+ params=student_params,
1796
+ dropout_rng=dropout_rng,
1797
+ freeze_encoder=freeze_encoder,
1798
+ output_hidden_states=output_hidden_states,
1799
+ train=True,
1800
+ )
1801
+
1802
+ # CE (data) loss
1803
+ ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels)
1804
+
1805
+ # rescale by temperature to ensure gradients scale correctly
1806
+ teacher_distribution = jax.nn.softmax(teacher_outputs.logits / temperature, axis=-1)
1807
+ # ensure no information flow backwards through teacher
1808
+ teacher_distribution = jax.lax.stop_gradient(teacher_distribution)
1809
+ # log softmax of student predictions for numerical stability
1810
+ student_distribution = jax.nn.log_softmax(student_outputs.logits / temperature, axis=-1)
1811
+ # KL-divergence loss (scaled by temperature)
1812
+ kl_loss = kl_divergence(teacher_distribution, student_distribution, labels) * temperature**2
1813
+
1814
+ # MSE loss between enc-dec hidden-states and attentions
1815
+ mse_loss = (
1816
+ mean_square_error_loss(student_outputs, teacher_outputs)
1817
+ if output_hidden_states
1818
+ else jnp.zeros_like(kl_loss)
1819
+ )
1820
+
1821
+ # use DistilBart formulation - only tune the MSE weight and take remaining HPs from DistilBERT
1822
+ ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0
1823
+ loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss
1824
+
1825
+ return loss, (
1826
+ ce_loss,
1827
+ kl_loss,
1828
+ mse_loss,
1829
+ num_labels,
1830
+ )
1831
+
1832
+ grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
1833
+ (loss, (ce_loss, kl_loss, mse_loss, num_labels)), grad = grad_fn(to_dtype(student_state.params))
1834
+
1835
+ # true loss = total loss / total samples
1836
+ loss = jax.lax.psum(loss, "batch")
1837
+ num_labels = jax.lax.psum(num_labels, "batch")
1838
+ loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
1839
+
1840
+ # true grad = total grad / total samples
1841
+ grad = jax.lax.psum(grad, "batch")
1842
+ grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
1843
+ new_state = student_state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng, to_dtype=to_dtype)
1844
+
1845
+ # CE/KL/MSE losses for logging
1846
+ ce_loss = jax.lax.psum(ce_loss, "batch")
1847
+ ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss)
1848
+
1849
+ kl_loss = jax.lax.psum(kl_loss, "batch")
1850
+ kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss)
1851
+
1852
+ mse_loss = jax.lax.psum(mse_loss, "batch")
1853
+ mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss)
1854
+
1855
+ metrics = {
1856
+ "loss": loss,
1857
+ "learning_rate": linear_decay_lr_schedule_fn(student_state.step),
1858
+ "ce_loss": ce_loss,
1859
+ "kl_loss": kl_loss,
1860
+ "mse_loss": mse_loss,
1861
+ }
1862
+ return new_state, metrics
1863
+
1864
+ # Define eval fn
1865
+ def eval_step(student_params, teacher_params, batch):
1866
+ labels = batch.pop("labels")
1867
+ output_hidden_states = not share_hidden_states and training_args.mse_weight > 0
1868
+
1869
+ student_outputs = student_model(
1870
+ **batch,
1871
+ params=student_params,
1872
+ output_hidden_states=output_hidden_states,
1873
+ train=False,
1874
+ )
1875
+ student_distribution = jax.nn.log_softmax(student_outputs.logits, axis=-1)
1876
+ ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels)
1877
+
1878
+ teacher_outputs = teacher_model(
1879
+ **batch,
1880
+ params=teacher_params,
1881
+ output_hidden_states=output_hidden_states,
1882
+ train=False,
1883
+ )
1884
+ teacher_distribution = jax.nn.softmax(teacher_outputs.logits, axis=-1)
1885
+ # temperature is always 1 for eval
1886
+ kl_loss = kl_divergence(teacher_distribution, student_distribution, labels)
1887
+
1888
+ mse_loss = (
1889
+ mean_square_error_loss(student_outputs, teacher_outputs)
1890
+ if output_hidden_states
1891
+ else jnp.zeros_like(kl_loss)
1892
+ )
1893
+
1894
+ ce_weight = 0.8 if training_args.kl_weight > 0 else 1.0
1895
+ loss = ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss
1896
+ # true loss = total loss / total samples
1897
+ loss = jax.lax.psum(loss, "batch")
1898
+ num_labels = jax.lax.psum(num_labels, "batch")
1899
+ loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
1900
+
1901
+ # CE/KL/MSE losses for logging
1902
+ ce_loss = jax.lax.psum(ce_loss, "batch")
1903
+ ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss)
1904
+
1905
+ kl_loss = jax.lax.psum(kl_loss, "batch")
1906
+ kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss)
1907
+
1908
+ mse_loss = jax.lax.psum(mse_loss, "batch")
1909
+ mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss)
1910
+
1911
+ metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss, "mse_loss": mse_loss}
1912
+ return metrics
1913
+
1914
+ # Define generation function
1915
+ num_beams = (
1916
+ training_args.generation_num_beams
1917
+ if training_args.generation_num_beams is not None
1918
+ else student_model.config.num_beams
1919
+ )
1920
+
1921
+ # forcing the language and task tokens helps the model in its generations
1922
+ gen_kwargs = {
1923
+ "max_length": max_label_length,
1924
+ "num_beams": num_beams,
1925
+ "language": "<|en|>",
1926
+ "task": "transcribe",
1927
+ "return_timestamps": return_timestamps,
1928
+ }
1929
+
1930
+ def generate_step(student_params, batch):
1931
+ output_ids = student_model.generate(
1932
+ batch[model_input_name],
1933
+ attention_mask=batch.get("attention_mask"),
1934
+ params=student_params,
1935
+ **gen_kwargs,
1936
+ )
1937
+ return output_ids.sequences
1938
+
1939
+ # Replicate the train state on each device
1940
+ student_state = student_state.replicate()
1941
+
1942
+ # Replicate the teacher params on each device
1943
+ teacher_params = jax_utils.replicate(teacher_params)
1944
+
1945
+ # Create parallel version of the train and eval step
1946
+ p_train_step = jax.pmap(
1947
+ train_step,
1948
+ "batch",
1949
+ in_axes=(0, 0, 0, None, None, None),
1950
+ donate_argnums=(0,),
1951
+ static_broadcasted_argnums=(
1952
+ 3,
1953
+ 4,
1954
+ ),
1955
+ )
1956
+ p_eval_step = jax.pmap(eval_step, "batch")
1957
+ p_generate_step = jax.pmap(generate_step, "batch")
1958
+
1959
+ logger.info("***** Running training *****")
1960
+ logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
1961
+ logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
1962
+ logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
1963
+ logger.info(
1964
+ f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
1965
+ )
1966
+ logger.info(f" Total optimization steps = {total_train_steps}")
1967
+
1968
+ # ======================== Training ================================
1969
+ train_time = 0
1970
+ train_start = time.time()
1971
+ train_metrics = []
1972
+ batches_to_skip = jax.device_get(unreplicate(student_state.step))
1973
+ cur_step = int(batches_to_skip) # will be zero if starting from scratch
1974
+ epochs_trained = batches_to_skip // steps_per_epoch
1975
+ steps_trained_progress_bar = tqdm(range(total_train_steps), desc="Train steps ... ", position=0)
1976
+ steps_trained_progress_bar.update(batches_to_skip)
1977
+ continue_training = True
1978
+ minibatch_steps = 0
1979
+
1980
+ if batches_to_skip > 0:
1981
+ logger.info(" Continuing training from checkpoint, will skip to saved global_step")
1982
+ logger.info(f" Continuing training from epoch {epochs_trained}")
1983
+ logger.info(f" Continuing training from global step {batches_to_skip}")
1984
+
1985
+ # Generate a training data loader by shuffling sampling indices from the train dataset
1986
+ train_loader = get_data_loader(
1987
+ training_args.seed,
1988
+ vectorized_datasets["train"],
1989
+ batch_size=train_batch_size,
1990
+ data_collator=data_collator,
1991
+ dataloader_num_workers=dataloader_num_workers,
1992
+ skip_batches=batches_to_skip,
1993
+ prefetch_size=dataloader_prefetch_size,
1994
+ )
1995
+
1996
+ for epoch in range(epochs_trained, num_epochs):
1997
+ if hasattr(train_loader, "dataset") and isinstance(train_loader.dataset, IterableDataset):
1998
+ train_loader.dataset.set_epoch(epoch)
1999
+
2000
+ for batch in train_loader:
2001
+ minibatch_steps += 1
2002
+ update_step = minibatch_steps == gradient_accumulation_steps
2003
+
2004
+ if update_step:
2005
+ steps_trained_progress_bar.update(1)
2006
+ cur_step += 1
2007
+ minibatch_steps = 0
2008
+
2009
+ batch = shard(batch.data)
2010
+ student_state, train_metric = p_train_step(
2011
+ student_state,
2012
+ teacher_params,
2013
+ batch,
2014
+ training_args.freeze_encoder,
2015
+ share_hidden_states,
2016
+ training_args.temperature,
2017
+ )
2018
+
2019
+ if cur_step % training_args.logging_steps == 0 and update_step:
2020
+ train_metrics.append(train_metric)
2021
+ train_metric_to_write = unreplicate(train_metric)
2022
+ steps_trained_progress_bar.write(
2023
+ f"Step... ({cur_step} / {total_train_steps} | Loss:"
2024
+ f" {train_metric_to_write['loss']}, Learning Rate:"
2025
+ f" {train_metric_to_write['learning_rate']})"
2026
+ )
2027
+ if has_wandb and jax.process_index() == 0:
2028
+ write_wandb_metric(
2029
+ wandb_logger,
2030
+ train_metric_to_write,
2031
+ train_time + time.time() - train_start,
2032
+ cur_step,
2033
+ epoch,
2034
+ prefix="train",
2035
+ )
2036
+
2037
+ # save checkpoint and weights after each save_steps and at the end of training
2038
+ if (cur_step % training_args.save_steps == 0 and update_step) or cur_step == total_train_steps:
2039
+ if jax.process_index() == 0:
2040
+ save_hf_weights(
2041
+ student_state,
2042
+ student_model,
2043
+ processor,
2044
+ training_args.output_dir,
2045
+ cur_step,
2046
+ total_train_steps,
2047
+ use_scan=training_args.use_scan,
2048
+ )
2049
+ if training_args.save_train_state:
2050
+ student_state.save_state(
2051
+ training_args.output_dir, save_total_limit=training_args.save_total_limit
2052
+ )
2053
+ if training_args.push_to_hub:
2054
+ repo.push_to_hub(
2055
+ commit_message=f"Saving train state of step {cur_step}",
2056
+ blocking=False,
2057
+ )
2058
+
2059
+ if training_args.do_eval and (
2060
+ (cur_step % eval_steps == 0 and update_step) or cur_step == total_train_steps
2061
+ ):
2062
+ train_time += time.time() - train_start
2063
+ # ======================== Evaluating ==============================
2064
+ for eval_split in all_eval_splits:
2065
+ eval_metrics = []
2066
+ eval_preds = []
2067
+ eval_labels = []
2068
+ eval_start = time.time()
2069
+
2070
+ eval_loader = get_data_loader(
2071
+ training_args.seed,
2072
+ vectorized_datasets[eval_split],
2073
+ batch_size=eval_batch_size,
2074
+ data_collator=data_collator,
2075
+ shuffle=False,
2076
+ drop_last=False,
2077
+ dataloader_num_workers=dataloader_num_workers,
2078
+ )
2079
+ for batch in tqdm(eval_loader, desc=f"Evaluating {eval_split}...", position=2):
2080
+ # Model forward
2081
+ labels = batch["labels"]
2082
+
2083
+ metrics = pad_shard_unpad(
2084
+ p_eval_step,
2085
+ static_argnums=(
2086
+ 0,
2087
+ 1,
2088
+ ),
2089
+ static_return=True,
2090
+ )(
2091
+ student_state.params,
2092
+ teacher_params,
2093
+ batch.data,
2094
+ min_device_batch=per_device_eval_batch_size,
2095
+ )
2096
+ eval_metrics.append(metrics)
2097
+
2098
+ # generation
2099
+ if training_args.predict_with_generate:
2100
+ generated_ids = pad_shard_unpad(p_generate_step)(
2101
+ student_state.params, batch.data, min_device_batch=per_device_eval_batch_size
2102
+ )
2103
+ eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
2104
+ eval_labels.extend(labels)
2105
+
2106
+ eval_time = time.time() - eval_start
2107
+
2108
+ # normalize eval metrics
2109
+ eval_metrics = get_metrics(eval_metrics)
2110
+ eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
2111
+
2112
+ # compute WER metric
2113
+ wer_desc = ""
2114
+ if training_args.predict_with_generate:
2115
+ wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
2116
+ eval_preds, eval_labels
2117
+ )
2118
+ eval_metrics.update(wer_metric)
2119
+ wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
2120
+
2121
+ # Print metrics and update progress bar
2122
+ steps_trained_progress_bar.write(
2123
+ f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
2124
+ f" {wer_desc})"
2125
+ )
2126
+
2127
+ if has_tensorboard and jax.process_index() == 0:
2128
+ write_eval_metric(
2129
+ summary_writer,
2130
+ eval_metrics,
2131
+ cur_step,
2132
+ prefix=eval_split,
2133
+ )
2134
+
2135
+ if has_wandb and jax.process_index() == 0:
2136
+ write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, epoch, prefix=eval_split)
2137
+ if training_args.predict_with_generate:
2138
+ write_wandb_pred(
2139
+ wandb_logger,
2140
+ pred_str,
2141
+ label_str,
2142
+ norm_pred_str,
2143
+ norm_label_str,
2144
+ cur_step,
2145
+ prefix=eval_split,
2146
+ )
2147
+
2148
+ if has_tensorboard and jax.process_index() == 0:
2149
+ # we'll only log to tensorboard every eval steps
2150
+ write_train_metric(
2151
+ summary_writer,
2152
+ train_metrics,
2153
+ train_time,
2154
+ cur_step,
2155
+ training_args.logging_steps,
2156
+ )
2157
+
2158
+ # flush the train metrics
2159
+ train_start = time.time()
2160
+ train_metrics = []
2161
+
2162
+ # break condition
2163
+ if cur_step == total_train_steps:
2164
+ continue_training = False
2165
+ break
2166
+
2167
+ if not continue_training:
2168
+ break
2169
+
2170
+
2171
+ if __name__ == "__main__":
2172
+ main()
run_experiment2.sh ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ TOKENIZERS_PARALLELISM=false python3 run_distillation.py \
3
+ --model_name_or_path "./nb-distil-large-init" \
4
+ --teacher_model_name_or_path "NbAiLab/nb-whisper-large" \
5
+ --train_dataset_name "NbAiLab/annotated_ncc_speech_styling_v2_vad3_distil_postLv2" \
6
+ --train_dataset_config_name "" \
7
+ --train_split_name "train" \
8
+ --eval_dataset_name "NbAiLab/ncc_speech_v7" \
9
+ --eval_dataset_config_name "" \
10
+ --eval_split_name "validation_norwegian_fleurs" \
11
+ --eval_steps 500 \
12
+ --save_steps 5000 \
13
+ --warmup_steps 1000 \
14
+ --learning_rate 0.0003 \
15
+ --lr_scheduler_type "constant_with_warmup" \
16
+ --logging_steps 500 \
17
+ --save_total_limit 1 \
18
+ --max_steps 200000 \
19
+ --wer_threshold 10 \
20
+ --per_device_train_batch_size 4\
21
+ --per_device_eval_batch_size 4 \
22
+ --dataloader_num_workers 8 \
23
+ --dtype "bfloat16" \
24
+ --output_dir "./nb-distil-whisper-larg7-flax6" \
25
+ --do_train \
26
+ --do_eval \
27
+ --use_scan \
28
+ --gradient_checkpointing \
29
+ --overwrite_output_dir \
30
+ --predict_with_generate \
31
+ --freeze_encoder \
32
+ --streaming \
33
+ --use_auth_token \
34
+ --report_to "wandb" \
35
+ --wandb_project "nb-distil-whisper-large-fleurseval" \
36
+ --wandb_name "flax_experiment1_bs4_v5_1e4_wer10" \
37
+ --save_code_to_wandb \
38
+ --save_train_state \
39
+ --hub_model_id "NbAiLab/nb-distil-whisper-large-flax6"7\
40
+ --push_to_hub
41
+