--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: ; got my car in about a:Well.. I added a new š to the stable! Special thanks to Matt at the @Tesla Clarkston location who made my Model Y order & delivery incredibly smooth.š I'm super lucky & got my car in about a week of deciding to go for it š³ Video coming soon about that process & more! https://t.co/PrP91xMnKk - text: '. But the price could be cheaper:Cāmon @elonmusk! Australians are busting to buy EVs & the best one is @Tesla imho. But the price could be cheaper, if you built a #gigafactory in Australia. 70% of the lithium in the cars is #aussie so why not set up a #gigafactorydownunder? All the talent and minerals are here!' - text: 'generate more net profit from legacy auto:As with previous quarters, $TSLA will generate more net profit from legacy auto regulatory credits sales this quarter than legacy auto will make in gross profit by selling EVs. This just keeps adding insult to injury.' - text: on keeping this car for 10 years:@_brivnii @Tesla I plan on keeping this car for 10 years total (so 6 more years at least). I don't feel the need to upgrade to a newer model even if price is no issue. This one has been reliable, and I got a good battery (no signs of degradation so far) - text: "The driverās car was a @Tesla:I took an @Uber home from the airport and my\ \ bill had a fuel surcharge on it because of the current price of gasoline. \n\ \nThe driverās car was a @Teslaā¦ \U0001F937" pipeline_tag: text-classification inference: false base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.44 name: Accuracy --- # SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect](https://huggingface.co/NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect) - **SetFitABSA Polarity Model:** [NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity](https://huggingface.co/NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neutral |