--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: large_dataset_stock_twitter_topic_Bert results: [] --- # large_dataset_stock_twitter_topic_Bert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0389 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0791 | 1.0 | 4938 | 0.0652 | 0.9854 | | 0.021 | 2.0 | 9876 | 0.0389 | 0.9925 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0