--- language: es tags: - Spanish - BART - biology - medical - seq2seq license: mit thumbnail: https://huggingface.co/Narrativa/NarbioBART/resolve/main/NarbioBART-logo.png ---
NarbioBART logo
## ๐Ÿฆ  NarbioBART ๐Ÿฅ **NarbioBART** (base) is a BART-like model trained on [Spanish Biomedical Crawled Corpus](https://zenodo.org/record/5510033#.Yhdk1ZHMLJx). BART is a transformer *encoder-decoder* (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function and (2) learning a model to reconstruct the original text. This model is particularly effective when fine-tuned for text generation tasks (e.g., summarization, translation) but also works well for comprehension tasks (e.g., text classification, question answering). ## Training details - Dataset: `Spanish Biomedical Crawled Corpus` - 90% for training / 10% for validation. - Training script: see [here](https://github.com/huggingface/transformers/blob/main/examples/flax/language-modeling/run_bart_dlm_flax.py) ## [Evaluation metrics](https://huggingface.co/mrm8488/bart-bio-base-es/tensorboard?params=scalars#frame) ๐Ÿงพ |Metric | # Value | |-------|---------| |Accuracy| 0.802| |Loss| 1.04| ## Benchmarks ๐Ÿ”จ WIP ๐Ÿšง ## How to use with `transformers` ```py from transformers import BartForConditionalGeneration, BartTokenizer model_id = "Narrativa/NarbioBART" model = BartForConditionalGeneration.from_pretrained(model_id, forced_bos_token_id=0) tokenizer = BartTokenizer.from_pretrained(model_id) def fill_mask_span(text): batch = tokenizer(text, return_tensors="pt") generated_ids = model.generate(batch["input_ids"]) print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)) text = "your text with a token." fill_mask_span(text) ``` ## Citation ``` @misc {narrativa_2023, author = { {Narrativa} }, title = { NarbioBART (Revision c9a4e07) }, year = 2023, url = { https://huggingface.co/Narrativa/NarbioBART }, doi = { 10.57967/hf/0500 }, publisher = { Hugging Face } } ```