--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - medical_data - Na0s/Primock_med model-index: - name: Final_Medical_whisper results: [] metrics: - cer - wer pipeline_tag: automatic-speech-recognition --- DALL-E-2024-10-05-20-47-54-A-doctor-in-a-modern-clinical-setting-carefully-listening-to-a-patient-s # med-whisper-large-final This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the primock_data dataset. ## Model description Fine tuned version of whisper-large-v3 through transfer learning on Doctor/Patient consultations ## Intended uses & limitations Medical transcription ## Training and evaluation data Na0s/Medical_Augmented_data ## Training procedure Exhaustive transfer learning ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Performance Overview: \| Model Name | WER | CER | Number of Parameters | |--------------------|------|------|----------------------| | Whisper Tiny | 0.46 | 0.27 | 39M | | Whisper Base | 0.42 | 0.26 | 74M | | Whisper Small | 0.39 | 0.26 | 244M | | Whisper Medium | 0.37 | 0.23 | 769M | | Whisper Large v3 | 0.33 | 0.18 | 1.55B | | **Whisper Medical**| **0.19** | **0.10** | **1.55B** | **Performance of foundation Whispers vs Medical Whisper on the Validation set.** | Model Name | WER | CER | Number of Parameters | |--------------------|------|------|----------------------| | **Whisper Medical**| **0.24** | **0.13** | **1.55B** | **Table: Performance of Whisper Medical on the Test set.** ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1