--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-xl-base-1.0 dataset: NYUAD-ComNets/Middle_Eastern_Male_Profession tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # Model description This model is a part of project targeting Debiasing of generative stable diffusion models. LoRA text2image fine-tuning - NYUAD-ComNets/Middle_Eastern_Male_Profession_Model These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the NYUAD-ComNets/Middle_Eastern_Male_Profession dataset. You can find some example images. prompt: a photo of a {profession}, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus # How to use this model: ``` API import requests API_URL = "https://api-inference.huggingface.co/models/NYUAD-ComNets/Middle_Eastern_Male_Profession_Model" headers = {"Authorization": "Bearer {hugging_face token}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content image_bytes = query({ "inputs": "a headshot of a person with green hair and eyeglasses", "parameters": {"negative_prompt": "cartoon", "seed":766}, }) # You can access the image with PIL.Image for example import io from PIL import Image image = Image.open(io.BytesIO(image_bytes)) image ``` ``` python import torch from compel import Compel, ReturnedEmbeddingsType from diffusers import DiffusionPipeline import random negative_prompt = "cartoon, anime, 3d, painting, b&w, low quality" models=["NYUAD-ComNets/Asian_Female_Profession_Model","NYUAD-ComNets/Black_Female_Profession_Model","NYUAD-ComNets/White_Female_Profession_Model", "NYUAD-ComNets/Indian_Female_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Female_Profession_Model","NYUAD-ComNets/Middle_Eastern_Female_Profession_Model", "NYUAD-ComNets/Asian_Male_Profession_Model","NYUAD-ComNets/Black_Male_Profession_Model","NYUAD-ComNets/White_Male_Profession_Model", "NYUAD-ComNets/Indian_Male_Profession_Model","NYUAD-ComNets/Latino_Hispanic_Male_Profession_Model","NYUAD-ComNets/Middle_Eastern_Male_Profession_Model"] adapters=["asian_female","black_female","white_female","indian_female","latino_female","middle_east_female", "asian_male","black_male","white_male","indian_male","latino_male","middle_east_male"] pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to("cuda") for i,j in zip(models,adapters): pipeline.load_lora_weights(i, weight_name="pytorch_lora_weights.safetensors",adapter_name=j) pipeline.set_adapters(random.choice(adapters)) compel = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] , text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True],truncate_long_prompts=False) conditioning, pooled = compel("a photo of a doctor, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus") negative_conditioning, negative_pooled = compel(negative_prompt) [conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning]) image = pipeline(prompt_embeds=conditioning, negative_prompt_embeds=negative_conditioning, pooled_prompt_embeds=pooled, negative_pooled_prompt_embeds=negative_pooled, num_inference_steps=40).images[0] image.save('/../../x.jpg') ``` # Examples | | | | |:-------------------------:|:-------------------------:|:-------------------------:| |screen shot 2017-08-07 at 12 18 15 pm | screen shot 2017-08-07 at 12 18 15 pm|screen shot 2017-08-07 at 12 18 15 pm| |screen shot 2017-08-07 at 12 18 15 pm | screen shot 2017-08-07 at 12 18 15 pm|screen shot 2017-08-07 at 12 18 15 pm| |screen shot 2017-08-07 at 12 18 15 pm | screen shot 2017-08-07 at 12 18 15 pm|screen shot 2017-08-07 at 12 18 15 pm| |screen shot 2017-08-07 at 12 18 15 pm | screen shot 2017-08-07 at 12 18 15 pm|screen shot 2017-08-07 at 12 18 15 pm| # Training data NYUAD-ComNets/Middle_Eastern_Male_Profession dataset was used to fine-tune stabilityai/stable-diffusion-xl-base-1.0 profession list =['pilot','doctor','nurse','pharmacist','dietitian','professor','teacher','mathematics scientist','computer engineer','programmer','tailor','cleaner', 'soldier','security guard','lawyer','manager','accountant','secretary','singer','journalist','youtuber','tiktoker','fashion model','chef','sushi chef'] # Configurations LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. # BibTeX entry and citation info ``` @article{aldahoul2024ai, title={AI-generated faces free from racial and gender stereotypes}, author={AlDahoul, Nouar and Rahwan, Talal and Zaki, Yasir}, journal={arXiv preprint arXiv:2402.01002}, year={2024} } @misc{ComNets, url={[https://huggingface.co/NYUAD-ComNets/Middle_Eastern_Male_Profession_Model](https://huggingface.co/NYUAD-ComNets/Middle_Eastern_Male_Profession_Model)}, title={Middle_Eastern_Male_Profession_Model}, author={Nouar AlDahoul, Talal Rahwan, Yasir Zaki} } ```