--- license: mit --- The model uses only sign `ӏ` for explosive consonants (small cyrillic palochka letter)! ```python import torch from transformers import BertTokenizer, AutoModel import numpy as np import pandas as pd import razdel import matplotlib.pyplot as plt from tqdm.auto import tqdm, trange ``` Download the model from Huggingface repository: ```python model_name = 'NM-development/labse-en-ru-ce-prototype' tokenizer = BertTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` Assign files with the texts you want to split into parallel sentences: ```python file_ru = None file_nm = None if file_ru is None or file_nm is None: nm_text = 'Ламро. Сахьт. Къена. Адам. Зуда. Вокха. Тӏулг.' ru_text = 'Горец. Час. Старый. Человек. Жена. Высокий. Камень.' else: with open(file_nm, 'r') as f1, open(file_ru, 'r') as f2: nm_text = f1.read() ru_text = f2.read() ``` In the following section define auxillary functions for parallel sentence comparison: ```python def embed(text): encoded_input = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt') with torch.inference_mode(): model_output = model(**encoded_input.to(model.device)) embeddings = model_output.pooler_output embeddings = torch.nn.functional.normalize(embeddings) return embeddings[0].cpu().numpy() def center_norm(v): v = v - v.mean(0) return v / (v**2).sum(1, keepdims=True) ** 0.5 def center_dot(x, y): m = (x.sum(0) + y.sum(0)) / (x.shape[0] + y.shape[0]) x = x - m y = y - m x = x / (x**2).sum(1, keepdims=True) ** 0.5 y = y / (y**2).sum(1, keepdims=True) ** 0.5 return np.dot(x, y.T) def get_top_mean_by_row(x, k=5): m, n = x.shape k = min(k, n) topk_indices = np.argpartition(x, -k, axis=1)[:, -k:] rows, _ = np.indices((m, k)) return x[rows, topk_indices].mean(1) def align3(sims): #sims = np.dot(center_norm(orig_vecs), center_norm(sum_vecs).T) ** 3 #sims = center_dot(orig_embeds, sum_embeds) #** 3 rewards = np.zeros_like(sims) choices = np.zeros_like(sims).astype(int) # 1: choose this pair, 2: decrease i, 3: decrease j # алгоритм, разрешающий пропускать сколько угодно пар, лишь бы была монотонность for i in range(sims.shape[0]): for j in range(0, sims.shape[1]): # вариант первый: выровнять i-тое предложение с j-тым score_add = sims[i, j] if i > 0 and j > 0: # вот как тогда выровняются предыдущие score_add += rewards[i-1, j-1] choices[i, j] = 1 best = score_add if i > 0 and rewards[i-1, j] > best: best = rewards[i-1, j] choices[i, j] = 2 if j > 0 and rewards[i, j-1] > best: best = rewards[i, j-1] choices[i, j] = 3 rewards[i, j] = best alignment = [] i = sims.shape[0] - 1 j = sims.shape[1] - 1 while i > 0 and j > 0: if choices[i, j] == 1: alignment.append([i, j]) i -= 1 j -= 1 elif choices[i, j] == 2: i -= 1 else: j -= 1 return alignment[::-1] def make_sents(text): sents = [s.text.replace('\n', ' ').strip() for p in text.split('\n\n') for s in razdel.sentenize(p)] sents = [s for s in sents if s] return sents ``` Firstly split your texts into sentences: ```python sents_nm = make_sents(nm_text) sents_ru = make_sents(ru_text) ``` Then embed all the chunks: ```python emb_ru = np.stack([embed(s) for s in tqdm(sents_ru)]) emb_nm = np.stack([embed(s) for s in tqdm(sents_nm)]) ``` Now compare sentenses' semanics vectors and build correlation heatmap: ```python pen = np.array([[min(len(x), len(y)) / max(len(x), len(y)) for x in sents_nm] for y in sents_ru]) sims = np.maximum(0, np.dot(emb_ru, emb_nm.T)) ** 1 * pen alpha = 0.2 penalty = 0.2 sims_rel = (sims.T - get_top_mean_by_row(sims) * alpha).T - get_top_mean_by_row(sims.T) * alpha - penalty alignment = align3(sims_rel) print(sum(sims[i, j] for i, j in alignment) / min(sims.shape)) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.imshow(sims_rel) plt.subplot(1, 2, 2) plt.scatter(*list(zip(*alignment)), s=5); ``` Finally, save the parallel corpus into a json file: ```python nm_ru_parallel_corpus = pd.DataFrame({'nm_text' : [sents_nm[x[1]] for x in alignment], 'ru_text' : [sents_ru[x[0]] for x in alignment]}) corpus_filename = 'nm_ru_corpus.json' with open(corpus_filename, 'w') as f: nm_ru_parallel_corpus.to_json(f, force_ascii=False, indent=4) ```